Geometric series with summation

A question is this type if and only if it combines geometric series (powers of x or fractions) with other summation techniques to find a sum involving r·x^r or similar.

4 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2024 June Q3
8 marks Challenging +1.2
3
  1. Use standard results from the list of formulae (MF19) to show that $$\sum _ { r = 1 } ^ { N } r ( r + 1 ) ( 3 r + 4 ) = \frac { 1 } { 12 } N ( N + 1 ) ( N + 2 ) ( 9 N + 19 )$$
  2. Express \(\frac { 3 r + 4 } { r ( r + 1 ) }\) in partial fractions and hence use the method of differences to find $$\sum _ { r = 1 } ^ { N } \frac { 3 r + 4 } { r ( r + 1 ) } \left( \frac { 1 } { 4 } \right) ^ { r + 1 }$$ in terms of \(N\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 3 r + 4 } { r ( r + 1 ) } \left( \frac { 1 } { 4 } \right) ^ { r + 1 }\).
Edexcel AEA 2016 June Q5
13 marks Challenging +1.8
5.(a)Show that $$\sum _ { r = 0 } ^ { n } x ^ { - r } = \frac { x } { x - 1 } - \frac { x ^ { - n } } { x - 1 } \quad \text { where } x \neq 0 \text { and } x \neq 1$$ (b)Hence find an expression in terms of \(x\) and \(n\) for \(\sum _ { r = 0 } ^ { n } r x ^ { - ( r + 1 ) }\) for \(x \neq 0\) and \(x \neq 1\) Simplify your answer.
(c)Find \(\sum _ { r = 0 } ^ { n } \left( \frac { 3 + 5 r } { 2 ^ { r } } \right)\) Give your answer in the form \(a - \frac { b + c n } { 2 ^ { n } }\) ,where \(a , b\) and \(c\) are integers.
Edexcel Paper 2 2021 October Q9
3 marks Standard +0.8
  1. Show that
$$\sum _ { n = 2 } ^ { \infty } \left( \frac { 3 } { 4 } \right) ^ { n } \cos ( 180 n ) ^ { \circ } = \frac { 9 } { 28 }$$
VI4V SIHI NI SIIIM ION OCVIAV SIHI NI III IM I ON OCVJ4V SIHI NI IMIMM ION OC
OCR MEI Further Pure Core 2021 November Q7
6 marks Challenging +1.2
7 Prove that \(\sum _ { r = 1 } ^ { n } \frac { r } { 2 ^ { r - 1 } } = 4 - \frac { n + 2 } { 2 ^ { n - 1 } }\) for all \(n \geqslant 1\).