OCR MEI FP1 — Question 2

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicSequences and series, recurrence and convergence

2
  1. Show that \(\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }\).
  2. Hence use the method of differences to find the sum of the series $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$

2 (i) Show that $\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }$.\\
(ii) Hence use the method of differences to find the sum of the series

$$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$

\hfill \mbox{\textit{OCR MEI FP1  Q2}}