| Exam Board | OCR MEI |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Sequences and series, recurrence and convergence |
2 (i) Show that $\frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { 1 } { ( r + 1 ) ( r + 2 ) }$.\\
(ii) Hence use the method of differences to find the sum of the series
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 1 ) ( r + 2 ) }$$
\hfill \mbox{\textit{OCR MEI FP1 Q2}}