CAIE Further Paper 1 2020 November — Question 2

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2020
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicSequences and series, recurrence and convergence

2
  1. Use standard results from the List of Formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } ( 7 r + 1 ) ( 7 r + 8 ) = a n ^ { 3 } + b n ^ { 2 } + c n$$ where \(a , b\) and \(c\) are constants to be determined.
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\) in terms of \(n\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }\).

2 (a) Use standard results from the List of Formulae (MF19) to show that

$$\sum _ { r = 1 } ^ { n } ( 7 r + 1 ) ( 7 r + 8 ) = a n ^ { 3 } + b n ^ { 2 } + c n$$

where $a , b$ and $c$ are constants to be determined.\\

(b) Use the method of differences to find $\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }$ in terms of $n$.\\

(c) Deduce the value of $\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 7 r + 1 ) ( 7 r + 8 ) }$.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2020 Q2}}