CAIE Further Paper 1 2022 June — Question 1

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2022
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicSequences and series, recurrence and convergence

1 Let \(a\) be a positive constant.
  1. Use the method of differences to find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { ( \mathrm { ar } + 1 ) ( \mathrm { ar } + \mathrm { a } + 1 ) }\) in terms of \(n\) and \(a\).
  2. Find the value of \(a\) for which \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( a r + 1 ) ( a r + a + 1 ) } = \frac { 1 } { 6 }\).

1 Let $a$ be a positive constant.\\
(a) Use the method of differences to find $\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { ( \mathrm { ar } + 1 ) ( \mathrm { ar } + \mathrm { a } + 1 ) }$ in terms of $n$ and $a$.\\

(b) Find the value of $a$ for which $\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( a r + 1 ) ( a r + a + 1 ) } = \frac { 1 } { 6 }$.\\

\hfill \mbox{\textit{CAIE Further Paper 1 2022 Q1}}