| Exam Board | CAIE |
|---|---|
| Module | Further Paper 1 (Further Paper 1) |
| Year | 2022 |
| Session | June |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Sequences and series, recurrence and convergence |
1 Let $a$ be a positive constant.\\
(a) Use the method of differences to find $\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { ( \mathrm { ar } + 1 ) ( \mathrm { ar } + \mathrm { a } + 1 ) }$ in terms of $n$ and $a$.\\
(b) Find the value of $a$ for which $\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( a r + 1 ) ( a r + a + 1 ) } = \frac { 1 } { 6 }$.\\
\hfill \mbox{\textit{CAIE Further Paper 1 2022 Q1}}