OCR FP2 2009 January — Question 8

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJanuary
TopicSequences and series, recurrence and convergence

8
\includegraphics[max width=\textwidth, alt={}, center]{b9f29713-bc86-4869-9e54-195208e5e81d-5_579_1363_267_390} The diagram shows the curve with equation \(y = \frac { 1 } { x + 1 }\). A set of \(n\) rectangles of unit width is drawn, starting at \(x = 0\) and ending at \(x = n\), where \(n\) is an integer.
  1. By considering the areas of these rectangles, explain why $$\frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n + 1 } < \ln ( n + 1 ) .$$
  2. By considering the areas of another set of rectangles, show that $$1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n } > \ln ( n + 1 ) .$$
  3. Hence show that $$\ln ( n + 1 ) + \frac { 1 } { n + 1 } < \sum _ { r = 1 } ^ { n + 1 } \frac { 1 } { r } < \ln ( n + 1 ) + 1$$
  4. State, with a reason, whether \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r }\) is convergent.