8
\includegraphics[max width=\textwidth, alt={}, center]{b9f29713-bc86-4869-9e54-195208e5e81d-5_579_1363_267_390}
The diagram shows the curve with equation \(y = \frac { 1 } { x + 1 }\). A set of \(n\) rectangles of unit width is drawn, starting at \(x = 0\) and ending at \(x = n\), where \(n\) is an integer.
- By considering the areas of these rectangles, explain why
$$\frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n + 1 } < \ln ( n + 1 ) .$$
- By considering the areas of another set of rectangles, show that
$$1 + \frac { 1 } { 2 } + \frac { 1 } { 3 } + \ldots + \frac { 1 } { n } > \ln ( n + 1 ) .$$
- Hence show that
$$\ln ( n + 1 ) + \frac { 1 } { n + 1 } < \sum _ { r = 1 } ^ { n + 1 } \frac { 1 } { r } < \ln ( n + 1 ) + 1$$
- State, with a reason, whether \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r }\) is convergent.