8 The curve \(C\) has parametric equations
$$\mathbf { x } = 2 \cosh t , \quad \mathbf { y } = \frac { 3 } { 2 } \mathbf { t } - \frac { 1 } { 4 } \sinh 2 \mathbf { t } , \text { for } 0 \leqslant t \leqslant 1$$
- Find \(\frac { \mathrm { dx } } { \mathrm { dt } }\) and show that \(\frac { \mathrm { dy } } { \mathrm { dt } } = 1 - \sinh ^ { 2 } \mathrm { t }\).
The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\). - Show that \(\mathrm { A } = \pi \int _ { 0 } ^ { 1 } \left( \frac { 3 } { 2 } \mathrm { t } - \frac { 1 } { 4 } \sinh 2 \mathrm { t } \right) ( 1 + \cosh 2 \mathrm { t } ) \mathrm { dt }\).
- Hence find \(A\) in terms of \(\pi , \sinh 2\) and \(\cosh 2\).
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.