CAIE Further Paper 2 2020 June — Question 7

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2020
SessionJune
TopicFirst order differential equations (integrating factor)

7
  1. Show that an appropriate integrating factor for $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ is \(x + \sqrt { x ^ { 2 } + 1 }\).
  2. Hence find the solution of the differential equation $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ for which \(y = \ln 2\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).