CAIE Further Paper 2 2020 June — Question 3

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2020
SessionJune
TopicComplex numbers 2

3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{20e14db3-0eb0-4954-91cf-027e16f8bf14-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).