| Exam Board | CAIE |
| Module | Further Paper 2 (Further Paper 2) |
| Year | 2021 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
4 Find the solution of the differential equation
$$\sin \theta \frac { d y } { d \theta } + y = \tan \frac { 1 } { 2 } \theta$$
where \(0 < \theta < \pi\), given that \(y = 1\) when \(\theta = \frac { 1 } { 2 } \pi\). Give your answer in the form \(y = \mathrm { f } ( \theta )\). [You may use without proof the result that \(\int \operatorname { cosec } \theta d \theta = \ln \tan \frac { 1 } { 2 } \theta\).]