A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q5
CAIE Further Paper 2 2021 June — Question 5
Exam Board
CAIE
Module
Further Paper 2 (Further Paper 2)
Year
2021
Session
June
Topic
Complex numbers 2
5
State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\).
Given that \(z\) is an \(n\)th root of unity and \(z \neq 1\), deduce that \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = 0\).
Given instead that \(z = \frac { 1 } { 3 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to show that $$\sum _ { m = 1 } ^ { \infty } 3 ^ { - m } \cos m \theta = \frac { 3 \cos \theta - 1 } { 10 - 6 \cos \theta }$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8