CAIE Further Paper 2 2021 June — Question 5

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2021
SessionJune
TopicComplex numbers 2

5
  1. State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\).
  2. Given that \(z\) is an \(n\)th root of unity and \(z \neq 1\), deduce that \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = 0\).
  3. Given instead that \(z = \frac { 1 } { 3 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to show that $$\sum _ { m = 1 } ^ { \infty } 3 ^ { - m } \cos m \theta = \frac { 3 \cos \theta - 1 } { 10 - 6 \cos \theta }$$