| Exam Board | AQA |
| Module | Further AS Paper 2 Statistics (Further AS Paper 2 Statistics) |
| Session | Specimen |
| Marks | 1 |
| Topic | Continuous Probability Distributions and Random Variables |
| Type | Single-piece PDF with k |
1 The random variable \(T\) has probability density defined by
$$\mathrm { f } ( t ) = \left\{ \begin{array} { c c }
\frac { t } { 8 } & 0 \leq t \leq k
0 & \text { otherwise }
\end{array} \right.$$
Find the value of \(k\)
[0pt]
[1 mark]
$$\begin{array} { l l l l }
\frac { 1 } { 16 } & \frac { 1 } { 4 } & 4 & 16
\end{array}$$