AQA Further AS Paper 2 Statistics 2018 June — Question 3

Exam BoardAQA
ModuleFurther AS Paper 2 Statistics (Further AS Paper 2 Statistics)
Year2018
SessionJune
TopicDiscrete Probability Distributions
TypeDirect probability from given distribution

3 The discrete random variable \(X\) has the following probability distribution
\(\boldsymbol { x }\)1249
\(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\)0.20.40.350.05
The continuous random variable \(Y\) has the following probability density function $$\mathrm { f } ( y ) = \begin{cases} \frac { 1 } { 64 } y ^ { 3 } & 0 \leq y \leq 4
0 & \text { otherwise } \end{cases}$$ Given that \(X\) and \(Y\) are independent, show that \(\mathrm { E } \left( X ^ { 2 } + Y ^ { 2 } \right) = \frac { 1327 } { 60 }\)