Questions FP2 (1157 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP2 2007 June Q1
1
  1. Given that \(\mathrm { f } ( r ) = ( r - 1 ) r ^ { 2 }\), show that $$\mathrm { f } ( r + 1 ) - \mathrm { f } ( r ) = r ( 3 r + 1 )$$
  2. Use the method of differences to find the value of $$\sum _ { r = 50 } ^ { 99 } r ( 3 r + 1 )$$ (4 marks)
AQA FP2 2007 June Q2
2 The cubic equation $$z ^ { 3 } + p z ^ { 2 } + 6 z + q = 0$$ has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\).
  2. Given that \(p\) and \(q\) are real and that \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 12\) :
    1. explain why the cubic equation has two non-real roots and one real root;
    2. find the value of \(p\).
  3. One root of the cubic equation is \(- 1 + 3 \mathrm { i }\). Find:
    1. the other two roots;
    2. the value of \(q\).
AQA FP2 2007 June Q3
3 Use De Moivre's Theorem to find the smallest positive angle \(\theta\) for which $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { 15 } = - \mathrm { i }$$ (5 marks)
AQA FP2 2007 June Q4
4
  1. Differentiate \(x \tan ^ { - 1 } x\) with respect to \(x\).
  2. Show that $$\int _ { 0 } ^ { 1 } \tan ^ { - 1 } x \mathrm {~d} x = \frac { \pi } { 4 } - \ln \sqrt { 2 }$$ (5 marks)
AQA FP2 2007 June Q5
5 The sketch shows an Argand diagram. The points \(A\) and \(B\) represent the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) respectively. The angle \(A O B = 90 ^ { \circ }\) and \(O A = O B\).
\includegraphics[max width=\textwidth, alt={}, center]{847295e3-d806-43b1-8d25-688c5558bfe1-3_533_869_852_632}
  1. Explain why \(z _ { 2 } = \mathrm { i } z _ { 1 }\).
  2. On a single copy of the diagram, draw:
    1. the locus \(L _ { 1 }\) of points satisfying \(\left| z - z _ { 2 } \right| = \left| z - z _ { 1 } \right|\);
    2. the locus \(L _ { 2 }\) of points satisfying \(\arg \left( z - z _ { 2 } \right) = \arg z _ { 1 }\).
  3. Find, in terms of \(z _ { 1 }\), the complex number representing the point of intersection of \(L _ { 1 }\) and \(L _ { 2 }\).
AQA FP2 2007 June Q6
6
  1. Show that $$\left( 1 - \frac { 1 } { ( k + 1 ) ^ { 2 } } \right) \times \frac { k + 1 } { 2 k } = \frac { k + 2 } { 2 ( k + 1 ) }$$
  2. Prove by induction that for all integers \(n \geqslant 2\) $$\left( 1 - \frac { 1 } { 2 ^ { 2 } } \right) \left( 1 - \frac { 1 } { 3 ^ { 2 } } \right) \left( 1 - \frac { 1 } { 4 ^ { 2 } } \right) \ldots \left( 1 - \frac { 1 } { n ^ { 2 } } \right) = \frac { n + 1 } { 2 n }$$
AQA FP2 2007 June Q7
7 A curve has equation \(y = 4 \sqrt { x }\).
  1. Show that the length of arc \(s\) of the curve between the points where \(x = 0\) and \(x = 1\) is given by $$s = \int _ { 0 } ^ { 1 } \sqrt { \frac { x + 4 } { x } } \mathrm {~d} x$$
    1. Use the substitution \(x = 4 \sinh ^ { 2 } \theta\) to show that $$\int \sqrt { \frac { x + 4 } { x } } \mathrm {~d} x = \int 8 \cosh ^ { 2 } \theta \mathrm {~d} \theta$$
    2. Hence show that $$s = 4 \sinh ^ { - 1 } 0.5 + \sqrt { 5 }$$
AQA FP2 2007 June Q8
8
    1. Given that \(z ^ { 6 } - 4 z ^ { 3 } + 8 = 0\), show that \(z ^ { 3 } = 2 \pm 2 \mathrm { i }\).
    2. Hence solve the equation $$z ^ { 6 } - 4 z ^ { 3 } + 8 = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  1. Show that, for any real values of \(k\) and \(\theta\), $$\left( z - k \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z - k \mathrm { e } ^ { - \mathrm { i } \theta } \right) = z ^ { 2 } - 2 k z \cos \theta + k ^ { 2 }$$
  2. Express \(z ^ { 6 } - 4 z ^ { 3 } + 8\) as the product of three quadratic factors with real coefficients.
AQA FP2 2009 June Q1
1 Given that \(z = 2 \mathrm { e } ^ { \frac { \pi \mathrm { i } } { 12 } }\) satisfies the equation $$z ^ { 4 } = a ( 1 + \sqrt { 3 } i )$$ where \(a\) is real:
  1. find the value of \(a\);
  2. find the other three roots of this equation, giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
AQA FP2 2009 June Q2
2
  1. Given that $$\frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { A } { 2 r - 1 } + \frac { B } { 2 r + 1 }$$ find the values of \(A\) and \(B\).
  2. Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
  3. Find the least value of \(n\) for which \(\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 }\) differs from 0.5 by less than 0.001 .
AQA FP2 2009 June Q3
3 The cubic equation $$z ^ { 3 } + p z ^ { 2 } + 25 z + q = 0$$ where \(p\) and \(q\) are real, has a root \(\alpha = 2 - 3 \mathrm { i }\).
  1. Write down another non-real root, \(\beta\), of this equation.
  2. Find:
    1. the value of \(\alpha \beta\);
    2. the third root, \(\gamma\), of the equation;
    3. the values of \(p\) and \(q\).
AQA FP2 2009 June Q4
4
  1. Sketch the graph of \(y = \tanh x\).
  2. Given that \(u = \tanh x\), use the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that $$x = \frac { 1 } { 2 } \ln \left( \frac { 1 + u } { 1 - u } \right)$$
    1. Show that the equation $$3 \operatorname { sech } ^ { 2 } x + 7 \tanh x = 5$$ can be written as $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$
    2. Show that the equation $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$ has only one solution for \(x\).
      Find this solution in the form \(\frac { 1 } { 2 } \ln a\), where \(a\) is an integer.
AQA FP2 2009 June Q5
5
  1. Prove by induction that, if \(n\) is a positive integer, $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta$$
  2. Hence, given that $$z = \cos \theta + \mathrm { i } \sin \theta$$ show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
  3. Given further that \(z + \frac { 1 } { z } = \sqrt { 2 }\), find the value of $$z ^ { 10 } + \frac { 1 } { z ^ { 10 } }$$
AQA FP2 2009 June Q6
6
  1. Two points, \(A\) and \(B\), on an Argand diagram are represented by the complex numbers \(2 + 3 \mathrm { i }\) and \(- 4 - 5 \mathrm { i }\) respectively. Given that the points \(A\) and \(B\) are at the ends of a diameter of a circle \(C _ { 1 }\), express the equation of \(C _ { 1 }\) in the form \(\left| z - z _ { 0 } \right| = k\).
  2. A second circle, \(C _ { 2 }\), is represented on the Argand diagram by the equation \(| z - 5 + 4 \mathrm { i } | = 4\). Sketch on one Argand diagram both \(C _ { 1 }\) and \(C _ { 2 }\).
  3. The points representing the complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) lie on \(C _ { 1 }\) and \(C _ { 2 }\) respectively and are such that \(\left| z _ { 1 } - z _ { 2 } \right|\) has its maximum value. Find this maximum value, giving your answer in the form \(a + b \sqrt { 5 }\).
AQA FP2 2009 June Q7
7 The diagram shows a curve which starts from the point \(A\) with coordinates ( 0,2 ). The curve is such that, at every point \(P\) on the curve, $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 } s$$ where \(s\) is the length of the \(\operatorname { arc } A P\).
\includegraphics[max width=\textwidth, alt={}, center]{587aac5c-fbc2-41d2-b1b3-16f3f7851d9d-4_399_764_1324_605}
    1. Show that $$\frac { \mathrm { d } s } { \mathrm {~d} x } = \frac { 1 } { 2 } \sqrt { 4 + s ^ { 2 } }$$ (3 marks)
    2. Hence show that $$s = 2 \sinh \frac { x } { 2 }$$
    3. Hence find the cartesian equation of the curve.
  1. Show that $$y ^ { 2 } = 4 + s ^ { 2 }$$
AQA FP2 2015 June Q1
5 marks
1
  1. Express \(\frac { 1 } { ( r + 2 ) r ! }\) in the form \(\frac { A } { ( r + 1 ) ! } + \frac { B } { ( r + 2 ) ! }\), where \(A\) and \(B\) are integers.
    [0pt] [3 marks]
  2. Hence find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( r + 2 ) r ! }\).
    [0pt] [2 marks]
AQA FP2 2015 June Q2
5 marks
2
  1. Sketch the graph of \(y = \tanh x\) and state the equations of its asymptotes.
  2. Use the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that $$\operatorname { sech } ^ { 2 } x + \tanh ^ { 2 } x = 1$$
  3. Solve the equation \(6 \operatorname { sech } ^ { 2 } x = 4 + \tanh x\), giving your answers in terms of natural logarithms.
    [0pt] [5 marks] \section*{Answer space for question 2}

  4. \includegraphics[max width=\textwidth, alt={}, center]{bc3aaed2-4aef-4aec-b657-098b1e581e55-04_855_1447_920_324}
AQA FP2 2015 June Q3
5 marks
3 A curve \(C\) is defined parametrically by $$x = \frac { t ^ { 2 } + 1 } { t } , \quad y = 2 \ln t$$
  1. Show that \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \left( 1 + \frac { 1 } { t ^ { 2 } } \right) ^ { 2 }\).
  2. The arc of \(C\) from \(t = 1\) to \(t = 2\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Find the area of the surface generated, giving your answer in the form \(\pi ( m \ln 2 + n )\), where \(m\) and \(n\) are integers.
    [0pt] [5 marks]
AQA FP2 2015 June Q4
4 The expression \(\mathrm { f } ( n )\) is given by \(\mathrm { f } ( n ) = 2 ^ { 4 n + 3 } + 3 ^ { 3 n + 1 }\).
  1. Show that \(\mathrm { f } ( k + 1 ) - 16 \mathrm { f } ( k )\) can be expressed in the form \(A \times 3 ^ { 3 k }\), where \(A\) is an integer.
  2. Prove by induction that \(\mathrm { f } ( n )\) is a multiple of 11 for all integers \(n \geqslant 1\).
AQA FP2 2015 June Q5
2 marks
5 The locus of points, \(L\), satisfies the equation $$| z - 2 + 4 \mathrm { i } | = | z |$$
  1. Sketch \(L\) on the Argand diagram below.
  2. The locus \(L\) cuts the real axis at \(A\) and the imaginary axis at \(B\).
    1. Show that the complex number represented by \(C\), the midpoint of \(A B\), is $$\frac { 5 } { 2 } - \frac { 5 } { 4 } \mathrm { i }$$
    2. The point \(O\) is the origin of the Argand diagram. Find the equation of the circle that passes through the points \(O , A\) and \(B\), giving your answer in the form \(| z - \alpha | = k\).
      [0pt] [2 marks] \section*{(a)}
      \includegraphics[max width=\textwidth, alt={}]{bc3aaed2-4aef-4aec-b657-098b1e581e55-10_1173_1242_1217_463}
AQA FP2 2015 June Q6
3 marks
6
  1. Given that \(y = ( x - 2 ) \sqrt { 5 + 4 x - x ^ { 2 } } + 9 \sin ^ { - 1 } \left( \frac { x - 2 } { 3 } \right)\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = k \sqrt { 5 + 4 x - x ^ { 2 } }$$ where \(k\) is an integer.
  2. Hence show that $$\int _ { 2 } ^ { \frac { 7 } { 2 } } \sqrt { 5 + 4 x - x ^ { 2 } } \mathrm {~d} x = p \sqrt { 3 } + q \pi$$ where \(p\) and \(q\) are rational numbers.
    [0pt] [3 marks]
AQA FP2 2015 June Q7
5 marks
7 The cubic equation \(27 z ^ { 3 } + k z ^ { 2 } + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the values of \(\alpha \beta + \beta \gamma + \gamma \alpha\) and \(\alpha \beta \gamma\).
    1. In the case where \(\beta = \gamma\), find the roots of the equation.
    2. Find the value of \(k\) in this case.
    1. In the case where \(\alpha = 1 - \mathrm { i }\), find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\).
    2. Hence find the value of \(k\) in this case.
  2. In the case where \(k = - 12\), find a cubic equation with integer coefficients which has roots \(\frac { 1 } { \alpha } + 1 , \frac { 1 } { \beta } + 1\) and \(\frac { 1 } { \gamma } + 1\).
    [0pt] [5 marks]
AQA FP2 2015 June Q8
8 The complex number \(\omega\) is given by \(\omega = \cos \frac { 2 \pi } { 5 } + \mathrm { i } \sin \frac { 2 \pi } { 5 }\).
    1. Verify that \(\omega\) is a root of the equation \(z ^ { 5 } = 1\).
    2. Write down the three other non-real roots of \(z ^ { 5 } = 1\), in terms of \(\omega\).
    1. Show that \(1 + \omega + \omega ^ { 2 } + \omega ^ { 3 } + \omega ^ { 4 } = 0\).
    2. Hence show that \(\left( \omega + \frac { 1 } { \omega } \right) ^ { 2 } + \left( \omega + \frac { 1 } { \omega } \right) - 1 = 0\).
  1. Hence show that \(\cos \frac { 2 \pi } { 5 } = \frac { \sqrt { 5 } - 1 } { 4 }\).
OCR FP2 Q1
1
  1. Write down and simplify the first three non-zero terms of the Maclaurin series for \(\ln ( 1 + 3 x )\).
  2. Hence find the first three non-zero terms of the Maclaurin series for $$\mathrm { e } ^ { x } \ln ( 1 + 3 x )$$ simplifying the coefficients.
OCR FP2 Q2
2 Use the Newton-Raphson method to find the root of the equation \(\mathrm { e } ^ { - x } = x\) which is close to \(x = 0.5\). Give the root correct to 3 decimal places.