AQA FP2 2015 June — Question 6 3 marks

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2015
SessionJune
Marks3
TopicIntegration by Substitution

6
  1. Given that \(y = ( x - 2 ) \sqrt { 5 + 4 x - x ^ { 2 } } + 9 \sin ^ { - 1 } \left( \frac { x - 2 } { 3 } \right)\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = k \sqrt { 5 + 4 x - x ^ { 2 } }$$ where \(k\) is an integer.
  2. Hence show that $$\int _ { 2 } ^ { \frac { 7 } { 2 } } \sqrt { 5 + 4 x - x ^ { 2 } } \mathrm {~d} x = p \sqrt { 3 } + q \pi$$ where \(p\) and \(q\) are rational numbers.
    [0pt] [3 marks]