AQA FP2 2015 June — Question 7 5 marks

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2015
SessionJune
Marks5
TopicRoots of polynomials

7 The cubic equation \(27 z ^ { 3 } + k z ^ { 2 } + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. Write down the values of \(\alpha \beta + \beta \gamma + \gamma \alpha\) and \(\alpha \beta \gamma\).
    1. In the case where \(\beta = \gamma\), find the roots of the equation.
    2. Find the value of \(k\) in this case.
    1. In the case where \(\alpha = 1 - \mathrm { i }\), find \(\alpha ^ { 2 }\) and \(\alpha ^ { 3 }\).
    2. Hence find the value of \(k\) in this case.
  2. In the case where \(k = - 12\), find a cubic equation with integer coefficients which has roots \(\frac { 1 } { \alpha } + 1 , \frac { 1 } { \beta } + 1\) and \(\frac { 1 } { \gamma } + 1\).
    [0pt] [5 marks]