AQA FP2 2009 June — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJune
TopicHyperbolic functions

4
  1. Sketch the graph of \(y = \tanh x\).
  2. Given that \(u = \tanh x\), use the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that $$x = \frac { 1 } { 2 } \ln \left( \frac { 1 + u } { 1 - u } \right)$$
    1. Show that the equation $$3 \operatorname { sech } ^ { 2 } x + 7 \tanh x = 5$$ can be written as $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$
    2. Show that the equation $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$ has only one solution for \(x\).
      Find this solution in the form \(\frac { 1 } { 2 } \ln a\), where \(a\) is an integer.