AQA FP2 2009 June — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJune
TopicComplex numbers 2

5
  1. Prove by induction that, if \(n\) is a positive integer, $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta$$
  2. Hence, given that $$z = \cos \theta + \mathrm { i } \sin \theta$$ show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
  3. Given further that \(z + \frac { 1 } { z } = \sqrt { 2 }\), find the value of $$z ^ { 10 } + \frac { 1 } { z ^ { 10 } }$$