A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Sequences and series, recurrence and convergence
Q2
AQA FP2 2009 June — Question 2
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2009
Session
June
Topic
Sequences and series, recurrence and convergence
2
Given that $$\frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { A } { 2 r - 1 } + \frac { B } { 2 r + 1 }$$ find the values of \(A\) and \(B\).
Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
Find the least value of \(n\) for which \(\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 }\) differs from 0.5 by less than 0.001 .
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7