AQA FP2 2007 June — Question 7

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJune
TopicHyperbolic functions

7 A curve has equation \(y = 4 \sqrt { x }\).
  1. Show that the length of arc \(s\) of the curve between the points where \(x = 0\) and \(x = 1\) is given by $$s = \int _ { 0 } ^ { 1 } \sqrt { \frac { x + 4 } { x } } \mathrm {~d} x$$
    1. Use the substitution \(x = 4 \sinh ^ { 2 } \theta\) to show that $$\int \sqrt { \frac { x + 4 } { x } } \mathrm {~d} x = \int 8 \cosh ^ { 2 } \theta \mathrm {~d} \theta$$
    2. Hence show that $$s = 4 \sinh ^ { - 1 } 0.5 + \sqrt { 5 }$$