Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2002 November Q11 EITHER
The vector \(\mathbf { e }\) is an eigenvector of the square matrix \(\mathbf { G }\). Show that
  1. \(\mathbf { e }\) is an eigenvector of \(\mathbf { G } + k \mathbf { I }\), where \(k\) is a scalar and \(\mathbf { I }\) is an identity matrix,
  2. \(\mathbf { e }\) is an cigenvector of \(\mathbf { G } ^ { 2 }\). Find the eigenvalues, and corresponding eigenvectors, of the matrices \(\mathbf { A }\) and \(\mathbf { B } ^ { 2 }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 3 & 0
    1 & 0 & 1
    - 1 & 3 & 2 \end{array} \right) \quad \text { and } \quad \mathbf { B } = \left( \begin{array} { r r r } - 5 & - 3 & 0
    1 & - 8 & 1
    - 1 & 3 & - 6 \end{array} \right)$$
CAIE FP1 2002 November Q11 OR
The curve \(C\) has equation $$y = \frac { ( x - a ) ( x - b ) } { x - c }$$ where \(a , b , c\) are constants, and it is given that \(0 < a < b < c\).
  1. Express \(y\) in the form $$x + P + \frac { Q } { x - c }$$ giving the constants \(P\) and \(Q\) in terms of \(a , b\) and \(c\).
  2. Find the equations of the asymptotes of \(C\).
  3. Show that \(C\) has two stationary points.
  4. Given also that \(a + b > c\), sketch \(C\), showing the asymptotes and the coordinates of the points of intersection of \(C\) with the axes.
CAIE FP1 2003 November Q1
1
\includegraphics[max width=\textwidth, alt={}, center]{653d57aa-7775-4063-a8c9-11c8bc964fae-2_566_606_264_772} The curve \(C\) has polar equation $$r = \theta ^ { \frac { 1 } { 2 } } \mathrm { e } ^ { \theta ^ { 2 } / \pi }$$ where \(0 \leqslant \theta \leqslant \pi\). The area of the finite region bounded by \(C\) and the line \(\theta = \beta\) is \(\pi\) (see diagram). Show that $$\beta = ( \pi \ln 3 ) ^ { \frac { 1 } { 2 } }$$
CAIE FP1 2003 November Q2
2 Given that $$u _ { n } = \frac { 1 } { n ^ { 2 } - n + 1 } - \frac { 1 } { n ^ { 2 } + n + 1 } ,$$ find \(S _ { N } = \sum _ { n = N + 1 } ^ { 2 N } u _ { n }\) in terms of \(N\). Find a number \(M\) such that \(S _ { N } < 10 ^ { - 20 }\) for all \(N > M\).
CAIE FP1 2003 November Q3
3 Three \(n \times 1\) column vectors are denoted by \(\mathbf { x } _ { 1 } , \mathbf { x } _ { 2 } , \mathbf { x } _ { 3 }\), and \(\mathbf { M }\) is an \(n \times n\) matrix. Show that if \(\mathbf { x } _ { 1 } , \mathbf { x } _ { 2 } , \mathbf { x } _ { 3 }\) are linearly dependent then the vectors \(\mathbf { M x } _ { 1 } , \mathbf { M x } _ { 2 } , \mathbf { M x } _ { 3 }\) are also linearly dependent. The vectors \(\mathbf { y } _ { 1 } , \mathbf { y } _ { 2 } , \mathbf { y } _ { 3 }\) and the matrix \(\mathbf { P }\) are defined as follows: $$\begin{gathered} \mathbf { y } _ { 1 } = \left( \begin{array} { l } 1
5
7 \end{array} \right) , \quad \mathbf { y } _ { 2 } = \left( \begin{array} { r } 2
- 3
CAIE FP1 2003 November Q5
5
7 \end{array} \right) , \quad \mathbf { y } _ { 2 } = \left( \begin{array} { r } 2
- 3
4 \end{array} \right) , \quad \mathbf { y } _ { 3 } = \left( \begin{array} { r } 5
51
55 \end{array} \right)
\mathbf { P } = \left( \begin{array} { r r r } 1 & - 4 & 3
0 & 2 & 5
0 & 0 & - 7 \end{array} \right) . \end{gathered}$$
  1. Show that \(\mathbf { y } _ { 1 } , \mathbf { y } _ { 2 } , \mathbf { y } _ { 3 }\) are linearly dependent.
  2. Find a basis for the linear space spanned by the vectors \(\mathbf { P y } _ { 1 } , \mathbf { P y } _ { 2 } , \mathbf { P y } _ { 3 }\). 4 Given that \(y = x \sin x\), find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\), simplifying your results as far as possible, and show that $$\frac { \mathrm { d } ^ { 6 } y } { \mathrm {~d} x ^ { 6 } } = - x \sin x + 6 \cos x$$ Use induction to establish an expression for \(\frac { \mathrm { d } ^ { 2 n } y } { \mathrm {~d} x ^ { 2 n } }\), where \(n\) is a positive integer. 5 The integral \(I _ { n }\) is defined by $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \mathrm {~d} x$$ By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \tan x \sec ^ { n } x \right)\), or otherwise, show that $$( n + 1 ) I _ { n + 2 } = 2 ^ { \frac { 1 } { 2 } n } + n I _ { n }$$ Find the value of \(I _ { 6 }\).
CAIE FP1 2003 November Q7
7 \end{array} \right) , \quad \mathbf { y } _ { 2 } = \left( \begin{array} { r } 2
- 3
4 \end{array} \right) , \quad \mathbf { y } _ { 3 } = \left( \begin{array} { r } 5
51
55 \end{array} \right)
\mathbf { P } = \left( \begin{array} { r r r } 1 & - 4 & 3
0 & 2 & 5
0 & 0 & - 7 \end{array} \right) . \end{gathered}$$
  1. Show that \(\mathbf { y } _ { 1 } , \mathbf { y } _ { 2 } , \mathbf { y } _ { 3 }\) are linearly dependent.
  2. Find a basis for the linear space spanned by the vectors \(\mathbf { P y } _ { 1 } , \mathbf { P y } _ { 2 } , \mathbf { P y } _ { 3 }\). 4 Given that \(y = x \sin x\), find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\), simplifying your results as far as possible, and show that $$\frac { \mathrm { d } ^ { 6 } y } { \mathrm {~d} x ^ { 6 } } = - x \sin x + 6 \cos x$$ Use induction to establish an expression for \(\frac { \mathrm { d } ^ { 2 n } y } { \mathrm {~d} x ^ { 2 n } }\), where \(n\) is a positive integer. 5 The integral \(I _ { n }\) is defined by $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \mathrm {~d} x$$ By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \tan x \sec ^ { n } x \right)\), or otherwise, show that $$( n + 1 ) I _ { n + 2 } = 2 ^ { \frac { 1 } { 2 } n } + n I _ { n }$$ Find the value of \(I _ { 6 }\). 6 Find the sum of the squares of the roots of the equation $$x ^ { 3 } + x + 12 = 0$$ and deduce that only one of the roots is real. The real root of the equation is denoted by \(\alpha\). Prove that \(- 3 < \alpha < - 2\), and hence prove that the modulus of each of the other roots lies between 2 and \(\sqrt { } 6\). 7 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 4 y = \mathrm { e } ^ { - \alpha t }$$ where \(\alpha\) is a constant and \(\alpha \neq 2\). Show that if \(\alpha < 2\) then, whatever the initial conditions, \(y \mathrm { e } ^ { \alpha t } \rightarrow \frac { 1 } { ( 2 - \alpha ) ^ { 2 } }\) as \(t \rightarrow \infty\).
CAIE FP1 2003 November Q8
8 Given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\) and \(n\) is a positive integer, show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ Hence express \(\sin ^ { 6 } \theta\) in the form $$p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + s$$ where the constants \(p , q , r , s\) are to be determined. Hence find the mean value of \(\sin ^ { 6 } \theta\) with respect to \(\theta\) over the interval \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
CAIE FP1 2003 November Q9
9 The line \(l _ { 1 }\) passes through the point \(A\) with position vector \(\mathbf { i } - \mathbf { j } - 2 \mathbf { k }\) and is parallel to the vector \(3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k }\). The variable line \(l _ { 2 }\) passes through the point \(( 1 + 5 \cos t ) \mathbf { i } - ( 1 + 5 \sin t ) \mathbf { j } - 14 \mathbf { k }\), where \(0 \leqslant t < 2 \pi\), and is parallel to the vector \(15 \mathbf { i } + 8 \mathbf { j } - 3 \mathbf { k }\). The points \(P\) and \(Q\) are on \(l _ { 1 }\) and \(l _ { 2 }\) respectively, and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\) in terms of \(t\).
  2. Hence show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) do not intersect, and find the maximum length of \(P Q\) as \(t\) varies.
  3. The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and \(P Q\); the plane \(\Pi _ { 2 }\) contains \(l _ { 2 }\) and \(P Q\). Find the angle between the planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), correct to the nearest tenth of a degree.
CAIE FP1 2003 November Q10
10 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 6 & 4 & 1
- 6 & - 1 & 3
8 & 8 & 4 \end{array} \right)$$ Hence find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } + \mathbf { A } ^ { 2 } + \mathbf { A } ^ { 3 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
CAIE FP1 2003 November Q11 EITHER
The curve \(C\) has equation \(y = \frac { 5 ( x - 1 ) ( x + 2 ) } { ( x - 2 ) ( x + 3 ) }\).
  1. Express \(y\) in the form \(P + \frac { Q } { x - 2 } + \frac { R } { x + 3 }\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) for exactly one value of \(x\) and find the corresponding value of \(y\).
  3. Write down the equations of all the asymptotes of \(C\).
  4. Find the set of values of \(k\) for which the line \(y = k\) does not intersect \(C\).
CAIE FP1 2003 November Q11 OR
A curve has equation \(y = \frac { 2 } { 3 } x ^ { \frac { 3 } { 2 } }\), for \(x \geqslant 0\). The arc of the curve joining the origin to the point where \(x = 3\) is denoted by \(R\).
  1. Find the length of \(R\).
  2. Find the \(y\)-coordinate of the centroid of the region bounded by the \(x\)-axis, the line \(x = 3\) and \(R\).
  3. Show that the area of the surface generated when \(R\) is rotated through one revolution about the \(y\)-axis is \(\frac { 232 } { 15 } \pi\).
CAIE FP1 2004 November Q1
1 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\left( \begin{array} { r r r r } 1 & 5 & 2 & 6
2 & 0 & - 1 & 7
3 & - 1 & - 2 & 10
4 & 10 & 13 & 29 \end{array} \right)$$ Find the dimension of the null space of T .
CAIE FP1 2004 November Q2
2 The curve \(C\) is defined parametrically by $$x = a \cos ^ { 3 } t , \quad y = a \sin ^ { 3 } t , \quad 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ where \(a\) is a positive constant. Find the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis.
CAIE FP1 2004 November Q3
3 Given that $$\alpha + \beta + \gamma = 0 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 14 , \quad \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 18$$ find a cubic equation whose roots are \(\alpha , \beta , \gamma\). Hence find possible values for \(\alpha , \beta , \gamma\).
CAIE FP1 2004 November Q4
4 The curve \(C\) has polar equation $$r = \mathrm { e } ^ { \frac { 1 } { 5 } \theta } , \quad 0 \leqslant \theta \leqslant \frac { 3 } { 2 } \pi$$
  1. Draw a sketch of \(C\).
  2. Find the length of \(C\), correct to 3 significant figures.
CAIE FP1 2004 November Q5
5 Let $$S _ { N } = \sum _ { n = 1 } ^ { N } ( - 1 ) ^ { n - 1 } n ^ { 3 }$$ Find \(S _ { 2 N }\) in terms of \(N\), simplifying your answer as far as possible. Hence write down an expression for \(S _ { 2 N + 1 }\) and find the limit, as \(N \rightarrow \infty\), of \(\frac { S _ { 2 N + 1 } } { N ^ { 3 } }\).
CAIE FP1 2004 November Q6
6 Write down all the 8th roots of unity. Verify that $$\left( z - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z - \mathrm { e } ^ { - \mathrm { i } \theta } \right) \equiv z ^ { 2 } - ( 2 \cos \theta ) z + 1$$ Hence express \(z ^ { 8 } - 1\) as the product of two linear factors and three quadratic factors, where all coefficients are real and expressed in a non-trigonometric form.
CAIE FP1 2004 November Q7
7 The curve \(C\) has equation $$x y + ( x + y ) ^ { 5 } = 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 5 } { 6 }\) at the point \(A ( 1,0 )\) on \(C\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2004 November Q8
8 The sequence of real numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } = 1\) and $$a _ { n + 1 } = \left( a _ { n } + \frac { 1 } { a _ { n } } \right) ^ { \lambda }$$ where \(\lambda\) is a constant greater than 1 . Prove by mathematical induction that, for \(n \geqslant 2\), $$a _ { n } \geqslant 2 ^ { \mathrm { g } ( n ) }$$ where \(g ( n ) = \lambda ^ { n - 1 }\). Prove also that, for \(n \geqslant 2 , \frac { a _ { n + 1 } } { a _ { n } } > 2 ^ { ( \lambda - 1 ) \mathrm { g } ( n ) }\).
CAIE FP1 2004 November Q9
9 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + x ^ { 3 } \right) ^ { - n } \mathrm {~d} x$$ where \(n > 0\).
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ x \left( 1 + x ^ { 3 } \right) ^ { - n } \right] = - ( 3 n - 1 ) \left( 1 + x ^ { 3 } \right) ^ { - n } + 3 n \left( 1 + x ^ { 3 } \right) ^ { - n - 1 }$$ and hence, or otherwise, show that $$I _ { n + 1 } = \frac { 2 ^ { - n } } { 3 n } + \left( 1 - \frac { 1 } { 3 n } \right) I _ { n }$$
  2. By considering the graph of \(y = \frac { 1 } { 1 + x ^ { 3 } }\), show that \(I _ { 1 } < 1\).
  3. Deduce that \(I _ { 3 } < \frac { 53 } { 72 }\).
CAIE FP1 2004 November Q10
10 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + 2 x - 3 } { ( \lambda x + 1 ) ( x + 4 ) }$$ where \(\lambda\) is a constant.
  1. Find the equations of the asymptotes of \(C\) for the case where \(\lambda = 0\).
  2. Find the equations of the asymptotes of \(C\) for the case where \(\lambda\) is not equal to any of \(- 1,0 , \frac { 1 } { 4 } , \frac { 1 } { 3 }\).
  3. Sketch \(C\) for the case where \(\lambda = - 1\). Show, on your diagram, the equations of the asymptotes and the coordinates of the points of intersection of \(C\) with the coordinate axes.
CAIE FP1 2004 November Q11
11 The line \(l _ { 1 }\) passes through the point \(A\), whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } - 4 \mathbf { k }\), and is parallel to the vector \(3 \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k }\). The line \(l _ { 2 }\) passes through the point \(B\), whose position vector is \(2 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k }\), and is parallel to the vector \(\mathbf { i } - \mathbf { j } - 4 \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). The plane \(\Pi _ { 1 }\) contains \(P Q\) and \(l _ { 1 }\), and the plane \(\Pi _ { 2 }\) contains \(P Q\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\).
  2. Find a vector perpendicular to \(\Pi _ { 1 }\).
  3. Find the perpendicular distance from \(B\) to \(\Pi _ { 1 }\).
  4. Find the angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
CAIE FP1 2004 November Q12 EITHER
The variable \(y\) depends on \(x\), and the variables \(x\) and \(t\) are related by \(x = \mathrm { e } ^ { t }\). Show that $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t } \quad \text { and } \quad x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t } .$$
  1. Given that \(y\) satisfies the differential equation $$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 16 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 25 y = 50 ( \ln x ) - 1$$ find a differential equation involving only \(t\) and \(y\).
  2. Show that the complementary function of the differential equation in \(t\) and \(y\) may be written in the form $$R \mathrm { e } ^ { - \frac { 3 } { 2 } t } \sin ( 2 t + \phi )$$ where \(R\) and \(\phi\) are arbitrary constants.
  3. Find a particular integral of the differential equation in \(t\) and \(y\).
  4. Hence find the general solution of the differential equation in \(x\) and \(y\).
CAIE FP1 2004 November Q12 OR
The matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that if \(\mathbf { A }\) is non-singular then
  1. \(\lambda \neq 0\),
  2. the matrix \(\mathbf { A } ^ { - 1 }\) has \(\lambda ^ { - 1 }\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 1 & 2
    0 & - 2 & 4
    0 & 0 & - 3 \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + 4 \mathbf { I } ) ^ { - 1 }$$ Find a non-singular matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { B } = \mathbf { P D P } ^ { - 1 }\).