| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2003 |
| Session | November |
| Topic | Complex numbers 2 |
8 Given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\) and \(n\) is a positive integer, show that
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$
Hence express \(\sin ^ { 6 } \theta\) in the form
$$p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + s$$
where the constants \(p , q , r , s\) are to be determined.
Hence find the mean value of \(\sin ^ { 6 } \theta\) with respect to \(\theta\) over the interval \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).