CAIE FP1 2004 November — Question 2

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2004
SessionNovember
TopicParametric equations

2 The curve \(C\) is defined parametrically by $$x = a \cos ^ { 3 } t , \quad y = a \sin ^ { 3 } t , \quad 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$ where \(a\) is a positive constant. Find the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis.