| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2004 |
| Session | November |
| Topic | Parametric equations |
2 The curve \(C\) is defined parametrically by
$$x = a \cos ^ { 3 } t , \quad y = a \sin ^ { 3 } t , \quad 0 \leqslant t \leqslant \frac { 1 } { 2 } \pi$$
where \(a\) is a positive constant. Find the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis.