CAIE FP1 2002 November — Question 11 EITHER

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2002
SessionNovember
TopicInvariant lines and eigenvalues and vectors

The vector \(\mathbf { e }\) is an eigenvector of the square matrix \(\mathbf { G }\). Show that
  1. \(\mathbf { e }\) is an eigenvector of \(\mathbf { G } + k \mathbf { I }\), where \(k\) is a scalar and \(\mathbf { I }\) is an identity matrix,
  2. \(\mathbf { e }\) is an cigenvector of \(\mathbf { G } ^ { 2 }\). Find the eigenvalues, and corresponding eigenvectors, of the matrices \(\mathbf { A }\) and \(\mathbf { B } ^ { 2 }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 3 & 0
    1 & 0 & 1
    - 1 & 3 & 2 \end{array} \right) \quad \text { and } \quad \mathbf { B } = \left( \begin{array} { r r r } - 5 & - 3 & 0
    1 & - 8 & 1
    - 1 & 3 & - 6 \end{array} \right)$$