CAIE FP1 2004 November — Question 12 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2004
SessionNovember
TopicInvariant lines and eigenvalues and vectors

The matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that if \(\mathbf { A }\) is non-singular then
  1. \(\lambda \neq 0\),
  2. the matrix \(\mathbf { A } ^ { - 1 }\) has \(\lambda ^ { - 1 }\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 1 & 2
    0 & - 2 & 4
    0 & 0 & - 3 \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + 4 \mathbf { I } ) ^ { - 1 }$$ Find a non-singular matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { B } = \mathbf { P D P } ^ { - 1 }\).