CAIE FP1 2002 November — Question 11 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2002
SessionNovember
TopicPolynomial Division & Manipulation

The curve \(C\) has equation $$y = \frac { ( x - a ) ( x - b ) } { x - c }$$ where \(a , b , c\) are constants, and it is given that \(0 < a < b < c\).
  1. Express \(y\) in the form $$x + P + \frac { Q } { x - c }$$ giving the constants \(P\) and \(Q\) in terms of \(a , b\) and \(c\).
  2. Find the equations of the asymptotes of \(C\).
  3. Show that \(C\) has two stationary points.
  4. Given also that \(a + b > c\), sketch \(C\), showing the asymptotes and the coordinates of the points of intersection of \(C\) with the axes.