| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2004 |
| Session | November |
| Topic | Complex numbers 2 |
6 Write down all the 8th roots of unity.
Verify that
$$\left( z - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( z - \mathrm { e } ^ { - \mathrm { i } \theta } \right) \equiv z ^ { 2 } - ( 2 \cos \theta ) z + 1$$
Hence express \(z ^ { 8 } - 1\) as the product of two linear factors and three quadratic factors, where all coefficients are real and expressed in a non-trigonometric form.