| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2003 |
| Session | November |
| Topic | 3x3 Matrices |
10 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { r r r }
6 & 4 & 1
- 6 & - 1 & 3
8 & 8 & 4
\end{array} \right)$$
Hence find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } + \mathbf { A } ^ { 2 } + \mathbf { A } ^ { 3 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).