CAIE FP1 2004 November — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2004
SessionNovember
TopicReduction Formulae

9 It is given that $$I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + x ^ { 3 } \right) ^ { - n } \mathrm {~d} x$$ where \(n > 0\).
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ x \left( 1 + x ^ { 3 } \right) ^ { - n } \right] = - ( 3 n - 1 ) \left( 1 + x ^ { 3 } \right) ^ { - n } + 3 n \left( 1 + x ^ { 3 } \right) ^ { - n - 1 }$$ and hence, or otherwise, show that $$I _ { n + 1 } = \frac { 2 ^ { - n } } { 3 n } + \left( 1 - \frac { 1 } { 3 n } \right) I _ { n }$$
  2. By considering the graph of \(y = \frac { 1 } { 1 + x ^ { 3 } }\), show that \(I _ { 1 } < 1\).
  3. Deduce that \(I _ { 3 } < \frac { 53 } { 72 }\).