Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2010 June Q11 EITHER
Challenging +1.3
The variables \(z\) and \(x\) are related by the differential equation $$3 z ^ { 2 } \frac { \mathrm {~d} ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 z ^ { 2 } \frac { \mathrm {~d} z } { \mathrm {~d} x } + 6 z \left( \frac { \mathrm {~d} z } { \mathrm {~d} x } \right) ^ { 2 } + 5 z ^ { 3 } = 5 x + 2$$ Use the substitution \(y = z ^ { 3 }\) to show that \(y\) and \(x\) are related by the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5 x + 2$$ Given that \(z = 1\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = - \frac { 2 } { 3 }\) when \(x = 0\), find \(z\) in terms of \(x\). Deduce that, for large positive values of \(x , z \approx x ^ { \frac { 1 } { 3 } }\).
CAIE FP1 2010 June Q11 OR
Challenging +1.2
The curve \(C\) has equation $$y = \frac { x ( x + 1 ) } { ( x - 1 ) ^ { 2 } }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that there is exactly one point of intersection of \(C\) with the asymptotes and find its coordinates.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence
    (a) find the coordinates of any stationary points of \(C\),
    (b) state the set of values of \(x\) for which the gradient of \(C\) is negative.
  4. Draw a sketch of \(C\).
CAIE FP1 2010 June Q1
Standard +0.3
1 Given that 5 is an eigenvalue of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 3 & 0 \\ 1 & 2 & 1 \\ - 1 & 3 & 4 \end{array} \right)$$ find a corresponding eigenvector. Hence find an eigenvalue and a corresponding eigenvector of the matrix \(\mathbf { A } + \mathbf { A } ^ { 2 }\).
CAIE FP1 2010 June Q2
Challenging +1.8
2 By considering the identity $$\cos [ ( 2 n - 1 ) \alpha ] - \cos [ ( 2 n + 1 ) \alpha ] \equiv 2 \sin \alpha \sin 2 n \alpha$$ show that if \(\alpha\) is not an integer multiple of \(\pi\) then $$\sum _ { n = 1 } ^ { N } \sin ( 2 n \alpha ) = \frac { 1 } { 2 } \cot \alpha - \frac { 1 } { 2 } \operatorname { cosec } \alpha \cos [ ( 2 N + 1 ) \alpha ]$$ Deduce that the infinite series $$\sum _ { n = 1 } ^ { \infty } \sin \left( \frac { 2 } { 3 } n \pi \right)$$ does not converge.
CAIE FP1 2010 June Q3
Standard +0.8
3 The sequence \(x _ { 1 } , x _ { 2 } , x _ { 3 } , \ldots\) is such that \(x _ { 1 } = 3\) and $$x _ { n + 1 } = \frac { 2 x _ { n } ^ { 2 } + 4 x _ { n } - 2 } { 2 x _ { n } + 3 }$$ for \(n = 1,2,3 , \ldots\). Prove by induction that \(x _ { n } > 2\) for all \(n\).
CAIE FP1 2010 June Q4
Challenging +1.8
4 The parametric equations of a curve are $$x = \cos t + t \sin t , \quad y = \sin t - t \cos t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \frac { 1 } { 2 } \pi\) is rotated about the \(x\)-axis through one complete revolution. Find the area of the surface generated, leaving your result in terms of \(\pi\).
CAIE FP1 2010 June Q5
Challenging +1.8
5 Use de Moivre's theorem to show that $$\sin 5 \theta = 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ Hence find all the roots of the equation $$32 x ^ { 5 } - 40 x ^ { 3 } + 10 x + 1 = 0$$ in the form \(\sin ( q \pi )\), where \(q\) is a positive rational number.
CAIE FP1 2010 June Q6
Standard +0.8
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } - 3 x - 7 } { x + 1 }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } > 1\) at all points of \(C\).
  3. Draw a sketch of \(C\).
CAIE FP1 2010 June Q7
Standard +0.8
7 It is given that $$x = t ^ { 2 } \mathrm { e } ^ { - t ^ { 2 } } \quad \text { and } \quad y = t \mathrm { e } ^ { - t ^ { 2 } }$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 t ^ { 2 } } { 2 t - 2 t ^ { 3 } }$$
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\).
CAIE FP1 2010 June Q8
Challenging +1.2
8 Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 10 \sin 3 x - 20 \cos 3 x$$ Show that, for large positive \(x\) and independently of the initial conditions, $$y \approx R \sin ( 3 x + \phi )$$ where the constants \(R\) and \(\phi\), such that \(R > 0\) and \(0 < \phi < 2 \pi\), are to be determined correct to 2 decimal places.
CAIE FP1 2010 June Q9
Challenging +1.2
9 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \mathrm {~d} \theta$$ where \(n\) is a non-negative integer. Show that \(I _ { n + 2 } = \frac { n + 1 } { n + 2 } I _ { n }\). The region \(R\) of the \(x - y\) plane is bounded by the \(x\)-axis, the line \(x = \frac { \pi } { 2 m }\) and the curve whose equation is \(y = \sin ^ { 4 } m x\), where \(m > 0\). Find the \(y\)-coordinate of the centroid of \(R\).
CAIE FP1 2010 June Q10
Challenging +1.2
10 The equation $$x ^ { 4 } + x ^ { 3 } + c x ^ { 2 } + 4 x - 2 = 0$$ where \(c\) is a constant, has roots \(\alpha , \beta , \gamma , \delta\).
  1. Use the substitution \(y = \frac { 1 } { x }\) to find an equation which has roots \(\frac { 1 } { \alpha } , \frac { 1 } { \beta } , \frac { 1 } { \gamma } , \frac { 1 } { \delta }\).
  2. Find, in terms of \(c\), the values of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 }\) and \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } } + \frac { 1 } { \delta ^ { 2 } }\).
  3. Hence find $$\left( \alpha - \frac { 1 } { \alpha } \right) ^ { 2 } + \left( \beta - \frac { 1 } { \beta } \right) ^ { 2 } + \left( \gamma - \frac { 1 } { \gamma } \right) ^ { 2 } + \left( \delta - \frac { 1 } { \delta } \right) ^ { 2 }$$ in terms of \(c\).
  4. Deduce that when \(c = - 3\) the roots of the given equation are not all real.
CAIE FP1 2010 June Q11
11 The curve \(C\) has polar equation $$r = \frac { a } { 1 + \theta }$$ where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(r\) decreases as \(\theta\) increases.
  2. The point \(P\) of \(C\) is further from the initial line than any other point of \(C\). Show that, at \(P\), $$\tan \theta = 1 + \theta$$ and verify that this equation has a root between 1.1 and 1.2.
  3. Draw a sketch of \(C\).
  4. Find the area of the region bounded by the initial line, the line \(\theta = \frac { 1 } { 2 } \pi\) and \(C\), leaving your answer in terms of \(\pi\) and \(a\).
CAIE FP1 2010 June Q12 EITHER
Challenging +1.8
The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } + \mathbf { j }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(- \mathbf { i } - \mathbf { k }\) and is parallel to the vector \(\mathbf { j } + 2 \mathbf { k }\). The point \(P\) is on \(l _ { 1 }\) and the point \(Q\) is on \(l _ { 2 }\) and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\).
  2. Find the position vector of \(Q\).
  3. Show that the perpendicular distance from \(Q\) to the plane containing \(A B\) and the line \(l _ { 1 }\) is \(\sqrt { } 3\).
CAIE FP1 2010 June Q12 OR
Challenging +1.2
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 1 & 5 & 7 \\ 3 & 9 & 17 & 25 \\ 1 & 7 & 7 & 11 \\ 3 & 6 & 16 & 23 \end{array} \right)\).
  1. In either order,
    (a) show that the dimension of \(R\), the range space of T , is equal to 2 ,
    (b) obtain a basis for \(R\).
  2. Show that the vector \(\left( \begin{array} { r } 1 \\ - 15 \\ - 17 \\ - 6 \end{array} \right)\) belongs to \(R\).
  3. It is given that \(\left\{ \mathbf { e } _ { 1 } , \mathbf { e } _ { 2 } \right\}\) is a basis for the null space of T , where \(\mathbf { e } _ { 1 } = \left( \begin{array} { r } 14 \\ 1 \\ - 3 \\ 0 \end{array} \right)\) and \(\mathbf { e } _ { 2 } = \left( \begin{array} { r } 19 \\ 2 \\ 0 \\ - 3 \end{array} \right)\). Show that, for all \(\lambda\) and \(\mu\), $$\mathbf { x } = \left( \begin{array} { r } 4 \\ - 3 \\ 0 \\ 0 \end{array} \right) + \lambda \mathbf { e } _ { 1 } + \mu \mathbf { e } _ { 2 }$$ is a solution of $$\mathbf { M x } = \left( \begin{array} { r } 1 \\ - 15 \\ - 17 \\ - 6 \end{array} \right)$$
  4. Hence find a solution of \(( * )\) of the form \(\left( \begin{array} { c } \alpha \\ 0 \\ \gamma \\ \delta \end{array} \right)\).
CAIE FP1 2011 June Q1
Standard +0.3
1 Express \(\frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\) in partial fractions and hence use the method of differences to find $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$ Deduce the value of $$\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }$$
CAIE FP1 2011 June Q2
Standard +0.8
2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\frac { \beta } { k } , \beta , k \beta\), where \(p , q , r , k\) and \(\beta\) are non-zero real constants. Show that \(\beta = - \frac { q } { p }\). Deduce that \(r p ^ { 3 } = q ^ { 3 }\).
CAIE FP1 2011 June Q3
Challenging +1.2
3 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & 3 & - 2 & 4 \\ 5 & 15 & - 9 & 19 \\ - 2 & - 6 & 3 & - 7 \\ 3 & 9 & - 5 & 11 \end{array} \right)\).
  1. Find the rank of \(\mathbf { M }\).
  2. Obtain a basis for the null space of T .
CAIE FP1 2011 June Q4
Standard +0.3
4 It is given that \(\mathrm { f } ( n ) = 3 ^ { 3 n } + 6 ^ { n - 1 }\).
  1. Show that \(\mathrm { f } ( n + 1 ) + \mathrm { f } ( n ) = 28 \left( 3 ^ { 3 n } \right) + 7 \left( 6 ^ { n - 1 } \right)\).
  2. Hence, or otherwise, prove by mathematical induction that \(\mathrm { f } ( n )\) is divisible by 7 for every positive integer \(n\).
CAIE FP1 2011 June Q5
Standard +0.8
5 The curve \(C\) has polar equation \(r = 2 \cos 2 \theta\). Sketch the curve for \(0 \leqslant \theta < 2 \pi\). Find the exact area of one loop of the curve.
CAIE FP1 2011 June Q6
Challenging +1.8
6 The line \(l _ { 1 }\) passes through the point with position vector \(8 \mathbf { i } + 8 \mathbf { j } - 7 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } + 3 \mathbf { j }\). The line \(l _ { 2 }\) passes through the point with position vector \(7 \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k }\) and is parallel to the vector \(4 \mathbf { i } - \mathbf { k }\). The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). In either order,
  1. show that \(P Q = 13\),
  2. find the position vectors of \(P\) and \(Q\).
CAIE FP1 2011 June Q7
Challenging +1.8
7 The variables \(x\) and \(y\) are related by the differential equation $$y ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 3 } = 8 \mathrm { e } ^ { - x }$$ Given that \(v = y ^ { 3 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} v } { \mathrm {~d} x } - 15 v = 24 \mathrm { e } ^ { - x }$$ Hence find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2011 June Q8
Challenging +1.2
8 Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A } = \left( \begin{array} { r r r } 4 & - 1 & 1 \\ - 1 & 0 & - 3 \\ 1 & - 3 & 0 \end{array} \right)\). Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
CAIE FP1 2011 June Q9
Standard +0.8
9 The curve \(C\) has equation \(y = x ^ { \frac { 3 } { 2 } }\). Find the coordinates of the centroid of the region bounded by \(C\), the lines \(x = 1 , x = 4\) and the \(x\)-axis. Show that the length of the arc of \(C\) from the point where \(x = 5\) to the point where \(x = 28\) is 139 .
CAIE FP1 2011 June Q10
Challenging +1.2
10 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { n } x \mathrm {~d} x$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 2\), $$I _ { n } = \frac { n - 1 } { n } I _ { n - 2 }$$ A curve has parametric equations \(x = a \sin ^ { 3 } t\) and \(y = a \cos ^ { 3 } t\), where \(a\) is a constant and \(0 \leqslant t \leqslant \frac { 1 } { 2 } \pi\). Show that the mean value \(m\) of \(y\) over the interval \(0 \leqslant x \leqslant a\) is given by $$m = 3 a \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( \cos ^ { 4 } t - \cos ^ { 6 } t \right) \mathrm { d } t$$ Find the exact value of \(m\), in terms of \(a\).