Questions — Edexcel AEA (165 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel AEA 2009 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{dfb57dc0-5831-4bbb-b1e5-58c4798215cb-5_700_684_246_694} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 2 \sin t , \quad y = \ln ( \sec t ) , \quad 0 \leqslant t < \frac { \pi } { 2 }$$ The tangent to \(C\) at the point \(P\) ,where \(t = \frac { \pi } { 3 }\) ,cuts the \(x\)-axis at \(A\) .
(a)Show that the \(x\)-coordinate of \(A\) is \(\frac { \sqrt { } 3 } { 3 } ( 3 - \ln 2 )\) . The shaded region \(R\) lies between \(C\) ,the positive \(x\)-axis and the tangent \(A P\) as shown in Figure 2 .
(b)Show that the area of \(R\) is \(\sqrt { 3 } ( 1 + \ln 2 ) - 2 \ln ( 2 + \sqrt { 3 } ) - \frac { \sqrt { 3 } } { 6 } ( \ln 2 ) ^ { 2 }\) .
Edexcel AEA 2009 June Q7
7.Relative to a fixed origin \(O\) the points \(A , B\) and \(C\) have position vectors $$\mathbf { a } = - \mathbf { i } + \frac { 4 } { 3 } \mathbf { j } + 7 \mathbf { k } , \quad \mathbf { b } = 4 \mathbf { i } + \frac { 4 } { 3 } \mathbf { j } + 2 \mathbf { k } \text { and } \mathbf { c } = 6 \mathbf { i } + \frac { 16 } { 3 } \mathbf { j } + 2 \mathbf { k } \text { respectively. }$$ (a)Find the cosine of angle \(A B C\) . The quadrilateral \(A B C D\) is a kite \(K\) .
(b)Find the area of \(K\) . A circle is drawn inside \(K\) so that it touches each of the 4 sides of \(K\) .
(c)Find the radius of the circle,giving your answer in the form \(p \sqrt { } ( q ) - q \sqrt { } ( p )\) ,where \(p\) and \(q\) are positive integers.
(d)Find the position vector of the point \(D\) .
(Total 18 marks)
Edexcel AEA 2010 June Q1
1.(a)Solve the equation $$\sqrt { } ( 3 x + 16 ) = 3 + \sqrt { } ( x + 1 )$$ (b)Solve the equation $$\log _ { 3 } ( x - 7 ) - \frac { 1 } { 2 } \log _ { 3 } x = 1 - \log _ { 3 } 2$$
Edexcel AEA 2010 June Q2
2.The sum of the first \(p\) terms of an arithmetic series is \(q\) and the sum of the first \(q\) terms of the same arithmetic series is \(p\) ,where \(p\) and \(q\) are positive integers and \(p \neq q\) . Giving simplified answers in terms of \(p\) and \(q\) ,find
(a)the common difference of the terms in this series,
(b)the first term of the series,
(c)the sum of the first \(( p + q )\) terms of the series.
Edexcel AEA 2010 June Q3
3.The curve \(C\) has equation $$x ^ { 2 } + y ^ { 2 } + f x y = g ^ { 2 }$$ where \(f\) and \(g\) are constants and \(g \neq 0\) .
(a)Find an expression in terms of \(\alpha , \beta\) and \(f\) for the gradient of \(C\) at the point \(( \alpha , \beta )\) . Given that \(f < 2\) and \(f \neq - 2\) and that the gradient of \(C\) at the point \(( \alpha , \beta )\) is 1 ,
(b)show that \(\alpha = - \beta = \frac { \pm g } { \sqrt { } ( 2 - f ) }\) . Given that \(f = - 2\) ,
(c)sketch \(C\) .
Edexcel AEA 2010 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-3_643_332_246_870} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a cuboid \(O A B C D E F G\), where \(O\) is the origin, \(A\) has position vector \(5 \mathbf { i } , C\) has position vector \(10 \mathbf { j }\) and \(D\) has position vector \(20 \mathbf { k }\).
  1. Find the cosine of angle \(C A F\). Given that the point \(X\) lies on \(A C\) and that \(F X\) is perpendicular to \(A C\),
  2. find the position vector of point \(X\) and the distance \(F X\). The line \(l _ { 1 }\) passes through \(O\) and through the midpoint of the face \(A B F E\). The line \(l _ { 2 }\) passes through \(A\) and through the midpoint of the edge \(F G\).
  3. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the coordinates of the point of intersection.
Edexcel AEA 2010 June Q5
5. $$I = \int \frac { 1 } { ( x - 1 ) \sqrt { } \left( x ^ { 2 } - 1 \right) } \mathrm { d } x , \quad x > 1$$ (a)Use the substitution \(x = 1 + u ^ { - 1 }\) to show that $$I = - \left( \frac { x + 1 } { x - 1 } \right) ^ { \frac { 1 } { 2 } } + c$$ (b)Hence show that $$\int _ { \sec \alpha } ^ { \sec \beta } \frac { 1 } { ( x - 1 ) \sqrt { } \left( x ^ { 2 } - 1 \right) } \mathrm { d } x = \cot \left( \frac { \alpha } { 2 } \right) - \cot \left( \frac { \beta } { 2 } \right) , \quad 0 < \alpha < \beta < \frac { \pi } { 2 }$$
Edexcel AEA 2010 June Q6
6.(a)Given that \(x ^ { 4 } + y ^ { 4 } = 1\) ,prove that \(x ^ { 2 } + y ^ { 2 }\) is a maximum when \(x = \pm y\) ,and find the maximum and minimum values of \(x ^ { 2 } + y ^ { 2 }\) .
(b)On the same diagram,sketch the curves \(C _ { 1 }\) and \(C _ { 2 }\) with equations \(x ^ { 4 } + y ^ { 4 } = 1\) and \(x ^ { 2 } + y ^ { 2 } = 1\) respectively.
(c)Write down the equation of the circle \(C _ { 3 }\) ,centre the origin,which touches the curve \(C _ { 1 }\) at the points where \(x = \pm y\) .
Edexcel AEA 2010 June Q7
7. $$\mathrm { f } ( x ) = \left[ 1 + \cos \left( x + \frac { \pi } { 4 } \right) \right] \left[ 1 + \sin \left( x + \frac { \pi } { 4 } \right) \right] , \quad 0 \leqslant x \leqslant 2 \pi$$
  1. Show that \(\mathrm { f } ( x )\) may be written in the form $$f ( x ) = \left( \frac { 1 } { \sqrt { 2 } } + \cos x \right) ^ { 2 } , \quad 0 \leqslant x \leqslant 2 \pi$$
  2. Find the range of the function \(\mathrm { f } ( x )\). The graph of \(y = \mathrm { f } ( x )\) is shown in Figure 2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-5_426_938_849_591} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure}
  3. Find the coordinates of all the maximum and minimum points on this curve. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-5_432_942_1535_589} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The region \(R\), bounded by \(y = 2\) and \(y = \mathrm { f } ( x )\), is shown shaded in Figure 3.
  4. Find the area of \(R\).
Edexcel AEA 2011 June Q1
1.Solve for \(0 \leqslant \theta \leqslant 180 ^ { \circ }\) $$\tan \left( \theta + 35 ^ { \circ } \right) = \cot \left( \theta - 53 ^ { \circ } \right)$$
Edexcel AEA 2011 June Q2
2.Given that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( 1 + \tan \left[ \frac { 1 } { 2 } x \right] \right) ^ { 2 } \mathrm {~d} x = a + \ln b$$ find the value of \(a\) and the value of \(b\) .
Edexcel AEA 2011 June Q3
3.A sequence \(\left\{ u _ { n } \right\}\) is given by $$\begin{aligned} u _ { 1 } & = k & &
u _ { 2 n } & = u _ { 2 n - 1 } \times p & & n \geqslant 1
u _ { 2 n + 1 } & = u _ { 2 n } \times q & & n \geqslant 1 \end{aligned}$$ where \(k , p\) and \(q\) are positive constants with \(p q \neq 1\)
(a)Write down the first 6 terms of this sequence.
(b)Show that \(\sum _ { r = 1 } ^ { 2 n } u _ { r } = \frac { k ( 1 + p ) \left( 1 - ( p q ) ^ { n } \right) } { 1 - p q }\) In part(c) \([ x ]\) means the integer part of \(x\) ,so for example \([ 2.73 ] = 2 , [ 4 ] = 4\) and \([ 0 ] = 0\)
(c)Find \(\sum _ { r = 1 } ^ { \infty } 6 \times \left( \frac { 4 } { 3 } \right) ^ { \left[ \frac { r } { 2 } \right] } \times \left( \frac { 3 } { 5 } \right) ^ { \left[ \frac { r - 1 } { 2 } \right] }\)
Edexcel AEA 2011 June Q4
4. The curve \(C\) has parametric equations $$\begin{gathered} x = \cos ^ { 2 } t
y = \cos t \sin t \end{gathered}$$ where \(0 \leqslant t < \pi\)
  1. Show that \(C\) is a circle and find its centre and its radius. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-3_668_750_726_660} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of \(C\). The point \(P\), with coordinates \(\left( \cos ^ { 2 } \alpha , \cos \alpha \sin \alpha \right) , \quad 0 < \alpha < \frac { \pi } { 2 }\), lies on \(C\). The rectangle \(R\) has one side on the \(x\)-axis, one side on the \(y\)-axis and \(O P\) as a diagonal, where \(O\) is the origin.
  2. Show that the area of \(R\) is \(\sin \alpha \cos ^ { 3 } \alpha\)
  3. Find the maximum area of \(R\), as \(\alpha\) varies.
Edexcel AEA 2011 June Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-4_739_1397_187_335} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with equation \(y = \frac { x ^ { 2 } - 2 } { x ^ { 2 } - 4 }\) and \(x \neq \pm 2\).
The curve cuts the \(y\)-axis at \(U\).
  1. Write down the coordinates of the point \(U\). The point \(P\) with \(x\)-coordinate \(a ( a \neq 0 )\) lies on \(C\).
  2. Show that the normal to \(C\) at \(P\) cuts the \(y\)-axis at the point $$\left( 0 , \left[ \frac { a ^ { 2 } - 2 } { a ^ { 2 } - 4 } - \frac { \left( a ^ { 2 } - 4 \right) ^ { 2 } } { 4 } \right] \right)$$ The circle \(E\), with centre on the \(y\)-axis, touches all three branches of \(C\).
    1. Show that $$\left[ \frac { a ^ { 2 } } { 2 \left( a ^ { 2 } - 4 \right) } - \frac { \left( a ^ { 2 } - 4 \right) ^ { 2 } } { 4 } \right] ^ { 2 } = a ^ { 2 } + \frac { \left( a ^ { 2 } - 4 \right) ^ { 4 } } { 16 }$$
    2. Hence, show that $$\left( a ^ { 2 } - 4 \right) ^ { 2 } = 1$$
    3. Find the centre and radius of \(E\).
Edexcel AEA 2011 June Q6
6.The line \(L\) has equation $$\mathbf { r } = \left( \begin{array} { r } 13
- 3
- 8 \end{array} \right) + t \left( \begin{array} { r } - 5
3
4 \end{array} \right)$$ The point \(P\) has position vector \(\left( \begin{array} { r } - 7
2
7 \end{array} \right)\) .
The point \(P ^ { \prime }\) is the reflection of \(P\) in \(L\) .
(a)Find the position vector of \(P ^ { \prime }\) .
(b)Show that the point \(A\) with position vector \(\left( \begin{array} { r } - 7
9
8 \end{array} \right)\) lies on \(L\) .
(c)Show that angle \(P A P ^ { \prime } = 120 ^ { \circ }\) . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-5_483_1367_1263_347} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The point \(B\) lies on \(L\) and \(A P B P ^ { \prime }\) forms a kite as shown in Figure 3.
The area of the kite is \(50 \sqrt { } 3\)
(d)Find the position vector of the point \(B\) .
(e)Show that angle \(B P A = 90 ^ { \circ }\) . The circle \(C\) passes through the points \(A , P , P ^ { \prime }\) and \(B\) .
(f)Find the position vector of the centre of \(C\) .
Edexcel AEA 2011 June Q13
13
- 3
- 8 \end{array} \right) + t \left( \begin{array} { r } - 5
3
4 \end{array} \right)$$ The point \(P\) has position vector \(\left( \begin{array} { r } - 7
2
7 \end{array} \right)\) .
The point \(P ^ { \prime }\) is the reflection of \(P\) in \(L\) .
(a)Find the position vector of \(P ^ { \prime }\) .
(b)Show that the point \(A\) with position vector \(\left( \begin{array} { r } - 7
9
8 \end{array} \right)\) lies on \(L\) .
(c)Show that angle \(P A P ^ { \prime } = 120 ^ { \circ }\) . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-5_483_1367_1263_347} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The point \(B\) lies on \(L\) and \(A P B P ^ { \prime }\) forms a kite as shown in Figure 3.
The area of the kite is \(50 \sqrt { } 3\)
(d)Find the position vector of the point \(B\) .
(e)Show that angle \(B P A = 90 ^ { \circ }\) . The circle \(C\) passes through the points \(A , P , P ^ { \prime }\) and \(B\) .
(f)Find the position vector of the centre of \(C\) .
7.
\includegraphics[max width=\textwidth, alt={}, center]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-6_675_1145_237_459} \section*{Figure 4} (a)Figure 4 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\) ,where $$\mathrm { f } ( x ) = \frac { x ^ { 2 } - 5 } { 3 - x } , \quad x \in \mathbb { R } , x \neq 3$$ The curve has a minimum at the point \(A\) ,with \(x\)-coordinate \(\alpha\) ,and a maximum at the point \(B\) , with \(x\)-coordinate \(\beta\) . Find the value of \(\alpha\) ,the value of \(\beta\) and the \(y\)-coordinates of the points \(A\) and \(B\) .
(b) The functions g and h are defined as follows $$\begin{array} { l l } \mathrm { g } : x \rightarrow x + p & x \in \mathbb { R }
\mathrm {~h} : x \rightarrow | x | & x \in \mathbb { R } \end{array}$$ where \(p\) is a constant. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-7_673_1338_591_367} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of the curve with equation \(y = \mathrm { h } ( \mathrm { fg } ( x ) + q ) , x \in \mathbb { R } , x \neq 0\), where \(q\) is a constant. The curve is symmetric about the \(y\)-axis and has minimum points at \(C\) and \(D\).
  1. Find the value of \(p\) and the value of \(q\).
  2. Write down the coordinates of \(D\).
    (c) The function \(m\) is given by $$\mathrm { m } ( x ) = \frac { x ^ { 2 } - 5 } { 3 - x } , \quad x \in \mathbb { R } , x \leqslant \alpha$$ where \(\alpha\) is the \(x\)-coordinate of \(A\) as found in part (a).
  3. Find \(\mathrm { m } ^ { - 1 }\)
  4. Write down the domain of \(\mathrm { m } ^ { - 1 }\)
  5. Find the value of \(t\) such that \(\mathrm { m } ( t ) = \mathrm { m } ^ { - 1 } ( t )\)
Edexcel AEA 2012 June Q1
1.The function f is given by $$\mathrm { f } ( x ) = x ^ { 2 } - 2 x + 6 , \quad x \geqslant 0$$ (a)Find the range of \(f\) . The function \(g\) is given by $$\mathrm { g } ( x ) = 3 + \sqrt { } ( x + 4 ) , \quad x \geqslant 2$$ (b)Find \(\operatorname { gf } ( x )\) .
(c)Find the domain and range of gf.
Edexcel AEA 2012 June Q2
2.(a)Show that $$\sin 3 x = 3 \sin x - 4 \sin ^ { 3 } x$$ Hence find
(b) \(\int \cos x ( 6 \sin x - 2 \sin 3 x ) ^ { \frac { 2 } { 3 } } \mathrm {~d} x\)
(c) \(\int ( 3 \sin 2 x - 2 \sin 3 x \cos x ) ^ { \frac { 1 } { 3 } } \mathrm {~d} x\)
Edexcel AEA 2012 June Q3
3.The angle \(\theta , 0 < \theta < \frac { \pi } { 2 }\) ,satisfies $$\tan \theta \tan 2 \theta = \sum _ { r = 0 } ^ { \infty } 2 \cos ^ { r } 2 \theta$$ (a)Show that \(\tan \theta = 3 ^ { p }\) ,where \(p\) is a rational number to be found.
(b)Hence show that \(\frac { \pi } { 6 } < \theta < \frac { \pi } { 4 }\)
Edexcel AEA 2012 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fc5d0d07-b750-4646-bdcb-419a290200c9-4_433_1011_221_529} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = ( x + a ) ( x - b ) ^ { 2 }\), where \(a\) and \(b\) are positive constants. The curve cuts the \(x\)-axis at \(P\) and has a maximum point at \(S\) and a minimum point at \(Q\).
  1. Write down the coordinates of \(P\) and \(Q\) in terms of \(a\) and \(b\).
  2. Show that \(G\), the area of the shaded region between the curve \(P S Q\) and the \(x\)-axis, is given by \(G = \frac { ( a + b ) ^ { 4 } } { 12 }\). The rectangle \(P Q R S T\) has \(R S T\) parallel to \(Q P\) and both \(P T\) and \(Q R\) are parallel to the \(y\)-axis.
  3. Show that \(\frac { G } { \text { Area of } P Q R S T } = k\), where \(k\) is a constant independent of \(a\) and \(b\) and find the value of \(k\).
Edexcel AEA 2013 June Q1
1.In the binomial expansion of $$\left( 1 + \frac { 12 n } { 5 } x \right) ^ { n }$$ the coefficients of \(x ^ { 2 }\) and \(x ^ { 3 }\) are equal and non-zero.
(a)Find the possible values of \(n\) .
(4)
(b)State,giving a reason,which value of \(n\) gives a valid expansion when \(x = \frac { 1 } { 2 }\)
(2)
Edexcel AEA 2013 June Q2
2.(a)Use the formula for \(\sin ( A - B )\) to show that \(\sin \left( 90 ^ { \circ } - x \right) = \cos x\)
(b)Solve for \(0 < \theta < 360 ^ { \circ }\) $$2 \sin \left( \theta + 17 ^ { \circ } \right) = \frac { \cos \left( \theta + 8 ^ { \circ } \right) } { \cos \left( \theta + 17 ^ { \circ } \right) }$$
Edexcel AEA 2013 June Q3
3.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have equations given by
\(L _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { c } - 7
7
1 \end{array} \right) + \lambda \left( \begin{array} { c } 2
0
- 3 \end{array} \right)\) and \(L _ { 2 } : \quad \mathbf { r } = \left( \begin{array} { c } 7
p
- 6 \end{array} \right) + \mu \left( \begin{array} { c } 10
- 4
- 1 \end{array} \right)\)
where \(\lambda\) and \(\mu\) are parameters and \(p\) is a constant.
The two lines intersect at the point \(C\) .
(a)Find
(i)the value of \(p\) ,
(ii)the position vector of \(C\) .
(b)Show that the point \(B\) with position vector \(\left( \begin{array} { c } - 13
11
- 4 \end{array} \right)\) lies on \(L _ { 2 }\) . The point \(A\) with position vector \(\left( \begin{array} { c } - 7
7
1 \end{array} \right)\) lies on \(L _ { 1 }\) .
(c)Find \(\cos ( \angle A C B )\) ,giving your answer as an exact fraction. The line \(L _ { 3 }\) bisects the angle \(A C B\) .
(d)Find a vector equation of \(L _ { 3 }\) .
Edexcel AEA 2013 June Q4
4.A sequence of positive integers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) has \(r\) th term given by $$a _ { r } = 2 ^ { r } - 1$$ (a)Write down the first 6 terms of this sequence.
(b)Verify that \(a _ { r + 1 } = 2 a _ { r } + 1\)
(c)Find \(\sum _ { r = 1 } ^ { n } a _ { r }\)
(d)Show that \(\frac { 1 } { a _ { r + 1 } } < \frac { 1 } { 2 } \times \frac { 1 } { a _ { r } }\)
(e)Hence show that \(1 + \frac { 1 } { 3 } + \frac { 1 } { 7 } + \frac { 1 } { 15 } + \frac { 1 } { 31 } + \ldots < 1 + \frac { 1 } { 3 } + \left( \frac { 1 } { 7 } + \frac { \frac { 1 } { 2 } } { 7 } + \frac { \frac { 1 } { 4 } } { 7 } + \ldots \right)\)
(f)Show that \(\frac { 31 } { 21 } < \sum _ { r = 1 } ^ { \infty } \frac { 1 } { a _ { r } } < \frac { 34 } { 21 }\)
Edexcel AEA 2013 June Q5
5.In this question u and v are functions of \(x\) .Given that \(\int \mathrm { u } \mathrm { d } x , \int \mathrm { v } \mathrm { d } x\) and \(\int \mathrm { uv } \mathrm { d } x\) satisfy $$\int \text { uv } \mathrm { d } x = \left( \int \mathrm { u } \mathrm {~d} x \right) \times \left( \int \mathrm { v } \mathrm {~d} x \right) \quad \text { uv } \neq 0$$ (a)show that \(1 = \frac { \int \mathrm { u } \mathrm { d } x } { \mathrm { u } } + \frac { \int \mathrm { v } \mathrm { d } x } { \mathrm { v } }\) Given also that \(\frac { \int \mathrm { u } \mathrm { d } x } { \mathrm { u } } = \mathrm { sin } ^ { 2 } x\),
(b)use part(a)to write down an expression,in terms of \(x\) ,for \(\frac { \int \mathrm { v } \mathrm { d } x } { \mathrm { v } }\) ,
(c)show that $$\frac { 1 } { \mathrm { u } } \frac { \mathrm { du } } { \mathrm {~d} x } = \frac { 1 - 2 \sin x \cos x } { \sin ^ { 2 } x }$$ (d)hence use integration to show that \(\mathrm { u } = A \mathrm { e } ^ { - \cot x } \operatorname { cosec } ^ { 2 } x\) ,where \(A\) is an arbitrary constant.
(e)By differentiating \(\mathrm { e } ^ { \tan x }\) find a similar expression for v .