Edexcel AEA 2010 June — Question 7

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2010
SessionJune
TopicAddition & Double Angle Formulae

7. $$\mathrm { f } ( x ) = \left[ 1 + \cos \left( x + \frac { \pi } { 4 } \right) \right] \left[ 1 + \sin \left( x + \frac { \pi } { 4 } \right) \right] , \quad 0 \leqslant x \leqslant 2 \pi$$
  1. Show that \(\mathrm { f } ( x )\) may be written in the form $$f ( x ) = \left( \frac { 1 } { \sqrt { 2 } } + \cos x \right) ^ { 2 } , \quad 0 \leqslant x \leqslant 2 \pi$$
  2. Find the range of the function \(\mathrm { f } ( x )\). The graph of \(y = \mathrm { f } ( x )\) is shown in Figure 2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-5_426_938_849_591} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure}
  3. Find the coordinates of all the maximum and minimum points on this curve. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-5_432_942_1535_589} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The region \(R\), bounded by \(y = 2\) and \(y = \mathrm { f } ( x )\), is shown shaded in Figure 3.
  4. Find the area of \(R\).