Edexcel AEA 2010 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2010
SessionJune
TopicVectors: Lines & Planes

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0396f61a-b844-40ed-98d1-82ee2d8a6807-3_643_332_246_870} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a cuboid \(O A B C D E F G\), where \(O\) is the origin, \(A\) has position vector \(5 \mathbf { i } , C\) has position vector \(10 \mathbf { j }\) and \(D\) has position vector \(20 \mathbf { k }\).
  1. Find the cosine of angle \(C A F\). Given that the point \(X\) lies on \(A C\) and that \(F X\) is perpendicular to \(A C\),
  2. find the position vector of point \(X\) and the distance \(F X\). The line \(l _ { 1 }\) passes through \(O\) and through the midpoint of the face \(A B F E\). The line \(l _ { 2 }\) passes through \(A\) and through the midpoint of the edge \(F G\).
  3. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect and find the coordinates of the point of intersection.