| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2010 |
| Session | June |
| Topic | Conic sections |
6.(a)Given that \(x ^ { 4 } + y ^ { 4 } = 1\) ,prove that \(x ^ { 2 } + y ^ { 2 }\) is a maximum when \(x = \pm y\) ,and find the maximum and minimum values of \(x ^ { 2 } + y ^ { 2 }\) .
(b)On the same diagram,sketch the curves \(C _ { 1 }\) and \(C _ { 2 }\) with equations \(x ^ { 4 } + y ^ { 4 } = 1\) and \(x ^ { 2 } + y ^ { 2 } = 1\) respectively.
(c)Write down the equation of the circle \(C _ { 3 }\) ,centre the origin,which touches the curve \(C _ { 1 }\) at the points where \(x = \pm y\) .