Edexcel AEA 2012 June — Question 6

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2012
SessionJune
TopicCurve Sketching
TypeFind constants from sketch features

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fc5d0d07-b750-4646-bdcb-419a290200c9-4_433_1011_221_529} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = ( x + a ) ( x - b ) ^ { 2 }\), where \(a\) and \(b\) are positive constants. The curve cuts the \(x\)-axis at \(P\) and has a maximum point at \(S\) and a minimum point at \(Q\).
  1. Write down the coordinates of \(P\) and \(Q\) in terms of \(a\) and \(b\).
  2. Show that \(G\), the area of the shaded region between the curve \(P S Q\) and the \(x\)-axis, is given by \(G = \frac { ( a + b ) ^ { 4 } } { 12 }\). The rectangle \(P Q R S T\) has \(R S T\) parallel to \(Q P\) and both \(P T\) and \(Q R\) are parallel to the \(y\)-axis.
  3. Show that \(\frac { G } { \text { Area of } P Q R S T } = k\), where \(k\) is a constant independent of \(a\) and \(b\) and find the value of \(k\).