Edexcel AEA 2011 June — Question 5

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2011
SessionJune
TopicProduct & Quotient Rules

5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12d3f92f-8464-4ba1-93a2-c7b841e3d3de-4_739_1397_187_335} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with equation \(y = \frac { x ^ { 2 } - 2 } { x ^ { 2 } - 4 }\) and \(x \neq \pm 2\).
The curve cuts the \(y\)-axis at \(U\).
  1. Write down the coordinates of the point \(U\). The point \(P\) with \(x\)-coordinate \(a ( a \neq 0 )\) lies on \(C\).
  2. Show that the normal to \(C\) at \(P\) cuts the \(y\)-axis at the point $$\left( 0 , \left[ \frac { a ^ { 2 } - 2 } { a ^ { 2 } - 4 } - \frac { \left( a ^ { 2 } - 4 \right) ^ { 2 } } { 4 } \right] \right)$$ The circle \(E\), with centre on the \(y\)-axis, touches all three branches of \(C\).
    1. Show that $$\left[ \frac { a ^ { 2 } } { 2 \left( a ^ { 2 } - 4 \right) } - \frac { \left( a ^ { 2 } - 4 \right) ^ { 2 } } { 4 } \right] ^ { 2 } = a ^ { 2 } + \frac { \left( a ^ { 2 } - 4 \right) ^ { 4 } } { 16 }$$
    2. Hence, show that $$\left( a ^ { 2 } - 4 \right) ^ { 2 } = 1$$
    3. Find the centre and radius of \(E\).