| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2010 |
| Session | June |
| Topic | Integration using inverse trig and hyperbolic functions |
5.
$$I = \int \frac { 1 } { ( x - 1 ) \sqrt { } \left( x ^ { 2 } - 1 \right) } \mathrm { d } x , \quad x > 1$$
(a)Use the substitution \(x = 1 + u ^ { - 1 }\) to show that
$$I = - \left( \frac { x + 1 } { x - 1 } \right) ^ { \frac { 1 } { 2 } } + c$$
(b)Hence show that
$$\int _ { \sec \alpha } ^ { \sec \beta } \frac { 1 } { ( x - 1 ) \sqrt { } \left( x ^ { 2 } - 1 \right) } \mathrm { d } x = \cot \left( \frac { \alpha } { 2 } \right) - \cot \left( \frac { \beta } { 2 } \right) , \quad 0 < \alpha < \beta < \frac { \pi } { 2 }$$