Edexcel AEA 2013 June — Question 3

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2013
SessionJune
TopicVectors: Lines & Planes

3.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have equations given by
\(L _ { 1 } : \quad \mathbf { r } = \left( \begin{array} { c } - 7
7
1 \end{array} \right) + \lambda \left( \begin{array} { c } 2
0
- 3 \end{array} \right)\) and \(L _ { 2 } : \quad \mathbf { r } = \left( \begin{array} { c } 7
p
- 6 \end{array} \right) + \mu \left( \begin{array} { c } 10
- 4
- 1 \end{array} \right)\)
where \(\lambda\) and \(\mu\) are parameters and \(p\) is a constant.
The two lines intersect at the point \(C\) .
(a)Find
(i)the value of \(p\) ,
(ii)the position vector of \(C\) .
(b)Show that the point \(B\) with position vector \(\left( \begin{array} { c } - 13
11
- 4 \end{array} \right)\) lies on \(L _ { 2 }\) . The point \(A\) with position vector \(\left( \begin{array} { c } - 7
7
1 \end{array} \right)\) lies on \(L _ { 1 }\) .
(c)Find \(\cos ( \angle A C B )\) ,giving your answer as an exact fraction. The line \(L _ { 3 }\) bisects the angle \(A C B\) .
(d)Find a vector equation of \(L _ { 3 }\) .