Questions — Edexcel AEA (165 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel AEA 2005 June Q5
5.The point \(A\) has position vector \(7 \mathbf { i } + 2 \mathbf { j } - 7 \mathbf { k }\) and the point \(B\) has position vector \(12 \mathbf { i } + 3 \mathbf { j } - 15 \mathbf { k }\) .
(a)Find a vector for the line \(L _ { 1 }\) which passes through \(A\) and \(B\) . The line \(L _ { 2 }\) has vector equation $$\mathbf { r } = - 4 \mathbf { i } + 12 \mathbf { k } + \mu ( \mathbf { i } - 3 \mathbf { k } )$$ (b)Show that \(L _ { 2 }\) passes through the origin \(O\) .
(c)Show that \(L _ { 1 }\) and \(L _ { 2 }\) intersect at a point \(C\) and find the position vector of \(C\) .
(d)Find the cosine of \(\angle O C A\) .
(e)Hence,or otherwise,find the shortest distance from \(O\) to \(L _ { 1 }\) .
(f)Show that \(| \overrightarrow { C O } | = | \overrightarrow { A B } |\) .
(g)Find a vector equation for the line which bisects \(\angle O C A\) .
\includegraphics[max width=\textwidth, alt={}, center]{f9d3e02c-cef2-435b-9cda-76c43fcac575-4_922_1054_279_586} Figure 1 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = x \left( 12 - x ^ { 2 } \right) .$$ The curve cuts the \(x\)-axis at the points \(P , O\) and \(R\), and \(Q\) is the maximum point.
Edexcel AEA 2005 June Q7
  1. (a) Use the substitution \(x = \sec \theta\) to show that
$$\int \sqrt { } \left( x ^ { 2 } - 1 \right) d x$$ can be written as $$\int \sec \theta \tan ^ { 2 } \theta \mathrm {~d} \theta$$ (3)
(b) Use integration by parts to show that $$\int \sec \theta \tan ^ { 2 } \theta \mathrm {~d} \theta = \frac { 1 } { 2 } [ \sec \theta \tan \theta - \ln | \sec \theta + \tan \theta | ] + \text { constant. }$$ (c) Evaluate \(\int _ { 0 } ^ { \frac { \pi } { 4 } } \sin x \sqrt { } ( \cos 2 x ) \mathrm { d } x\).
Edexcel AEA 2006 June Q1
1.(a)For \(| y | < 1\) ,write down the binomial series expansion of \(( 1 - y ) ^ { - 2 }\) in ascending powers of \(y\) up to and including the term in \(y ^ { 3 }\) .
(b)Hence,or otherwise,show that $$1 + \frac { 2 x } { 1 + x } + \frac { 3 x ^ { 2 } } { ( 1 + x ) ^ { 2 } } + \ldots + \frac { r x ^ { r - 1 } } { ( 1 + x ) ^ { r - 1 } } + \ldots$$ can be written in the form \(( a + x ) ^ { n }\) .Write down the values of the integers \(a\) and \(n\) .
(c)Find the set of values of \(x\) for which the series in part(b)is convergent.
Edexcel AEA 2006 June Q2
2.Given that \(( \sin \theta + \cos \theta ) \neq 0\) ,find all the solutions of $$\frac { 2 \cos 2 \theta ( \sin 2 \theta - \sqrt { } 3 \cos 2 \theta ) } { \sin \theta + \cos \theta } = \sqrt { } 6 ( \sin 2 \theta - \sqrt { } 3 \cos 2 \theta )$$ for \(0 \leq \theta < 360 ^ { \circ }\) .
Edexcel AEA 2006 June Q3
3.Given that \(x > y > 0\) ,
(a)by writing \(\log _ { y } x = z\) ,or otherwise,show that \(\log _ { y } x = \frac { 1 } { \log _ { x } y }\) .
(b)Given also that \(\log _ { x } y = \log _ { y } x\) ,show that \(y = \frac { 1 } { x }\) .
(c)Solve the simultaneous equations $$\begin{gathered} \log _ { x } y = \log _ { y } x
\log _ { x } ( x - y ) = \log _ { y } ( x + y ) \end{gathered}$$
Edexcel AEA 2006 June Q4
4.The line with equation \(y = m x\) is a tangent to the circle \(C _ { 1 }\) with equation $$( x + 4 ) ^ { 2 } + ( y - 7 ) ^ { 2 } = 13$$ (a)Show that \(m\) satisfies the equation $$3 m ^ { 2 } + 56 m + 36 = 0$$ The tangents from the origin \(O\) to \(C _ { 1 }\) touch \(C _ { 1 }\) at the points \(A\) and \(B\) .
(b)Find the coordinates of the points \(A\) and \(B\) .
(8)
Another circle \(C _ { 2 }\) has equation \(x ^ { 2 } + y ^ { 2 } = 13\) .The tangents from the point \(( 4 , - 7 )\) to \(C _ { 2 }\) touch it at the points \(P\) and \(Q\) .
(c)Find the coordinates of either the point \(P\) or the point \(Q\) .
(2)
Edexcel AEA 2006 June Q5
5.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have vector equations
\(L _ { 1 } : \quad \mathbf { r } = - 2 \mathbf { i } + 11.5 \mathbf { j } + \lambda ( 3 \mathbf { i } - 4 \mathbf { j } - \mathbf { k } )\),
\(L _ { 2 } : \quad \mathbf { r } = 11.5 \mathbf { i } + 3 \mathbf { j } + 8.5 \mathbf { k } + \mu ( 7 \mathbf { i } + 8 \mathbf { j } - 11 \mathbf { k } )\),
where \(\lambda\) and \(\mu\) are parameters.
(a)Show that \(L _ { 1 }\) and \(L _ { 2 }\) do not intersect.
(b)Show that the vector \(( 2 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) . The point \(A\) lies on \(L _ { 1 }\) ,the point \(B\) lies on \(L _ { 2 }\) and \(A B\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) .
(c)Find the position vector of the point \(A\) and the position vector of the point \(B\) .
(8)
\includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-4_554_1017_404_571} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = \sin ( \ln x ) , \quad x \geq 1 .$$ The point \(Q\) ,on \(C\) ,is a maximum.
Edexcel AEA 2006 June Q7
7.
\includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-5_648_1590_296_275} The circle \(C _ { 1 }\) has centre \(O\) and radius \(R\). The tangents \(A P\) and \(B P\) to \(C _ { 1 }\) meet at the point \(P\) and angle \(A P B = 2 \alpha , 0 < \alpha < \frac { \pi } { 2 }\). A sequence of circles \(C _ { 1 } , C _ { 2 } , \ldots , C _ { n } , \ldots\) is drawn so that each new circle \(C _ { n + 1 }\) touches each of \(C _ { n } , A P\) and \(B P\) for \(n = 1,2,3 , \ldots\) as shown in Figure 2. The centre of each circle lies on the line \(O P\).
  1. Show that the radii of the circles form a geometric sequence with common ratio $$\frac { 1 - \sin \alpha } { 1 + \sin \alpha }$$
  2. Find, in terms of \(R\) and \(\alpha\), the total area enclosed by all the circles, simplifying your answer. The area inside the quadrilateral \(P A O B\), not enclosed by part of \(C _ { 1 }\) or any of the other circles, is \(S\).
  3. Show that $$S = R ^ { 2 } \left( \alpha + \cot \alpha - \frac { \pi } { 4 } \operatorname { cosec } \alpha - \frac { \pi } { 4 } \sin \alpha \right) .$$
  4. Show that, as \(\alpha\) varies, $$\frac { \mathrm { d } S } { \mathrm {~d} \alpha } = R ^ { 2 } \cot ^ { 2 } \alpha \left( \frac { \pi } { 4 } \cos \alpha - 1 \right)$$
  5. Find, in terms of \(R\), the least value of \(S\) for \(\frac { \pi } { 6 } \leq \alpha \leq \frac { \pi } { 4 }\).
Edexcel AEA 2007 June Q1
1.(a)Write down the binomial expansion of \(\frac { 1 } { ( 1 - y ) ^ { 2 } } , | y | < 1\) ,in ascending powers of \(y\) up to and including the term in \(y ^ { 3 }\) .
(b)Hence,or otherwise,show that $$\frac { 1 } { 4 } \operatorname { cosec } ^ { 4 } \left( \frac { \theta } { 2 } \right) = 1 + 2 \cos \theta + 3 \cos ^ { 2 } \theta + 4 \cos ^ { 3 } \theta + \ldots + ( r + 1 ) \cos ^ { r } \theta + \ldots$$ and state the values of \(\theta\) for which this result is not valid.
(4)
Find
(c) $$\begin{aligned} & 1 + \frac { 2 } { 2 } + \frac { 3 } { 2 ^ { 2 } } + \frac { 4 } { 2 ^ { 3 } } + \ldots + \frac { ( r + 1 ) } { 2 ^ { r } } + \ldots
& 1 - \frac { 2 } { 2 } + \frac { 3 } { 2 ^ { 2 } } - \frac { 4 } { 2 ^ { 3 } } + \ldots + ( - 1 ) ^ { r } \frac { ( r + 1 ) } { 2 ^ { r } } + \ldots \end{aligned}$$ (d)
Edexcel AEA 2007 June Q2
2.(a)On the same diagram,sketch \(y = x\) and \(y = \sqrt { } x\) ,for \(x \geq 0\) ,and mark clearly the coordinates of the points of intersection of the two graphs.
(b)With reference to your sketch,explain why there exists a value \(a\) of \(x ( a > 1 )\) such that $$\int _ { 0 } ^ { a } x \mathrm {~d} x = \int _ { 0 } ^ { a } \sqrt { } x \mathrm {~d} x$$ (c)Find the exact value of \(a\) .
(d)Hence,or otherwise,find a non-constant function \(\mathrm { f } ( x )\) and a constant \(b ( b \neq 0 )\) such that $$\int _ { - b } ^ { b } \mathrm { f } ( x ) \mathrm { d } x = \int _ { - b } ^ { b } \sqrt { } [ \mathrm { f } ( x ) ] \mathrm { d } x$$
Edexcel AEA 2007 June Q3
3.(a)Solve,for \(0 \leq x < 2 \pi\) , $$\cos x + \cos 2 x = 0$$ (b)Find the exact value of \(x , x \geq 0\) ,for which $$\arccos x + \arccos 2 x = \frac { \pi } { 2 }$$ [ \(\arccos x\) is an alternative notation for \(\cos ^ { - 1 } x\) .]
Edexcel AEA 2007 June Q4
4.The function \(\mathrm { h } ( x )\) has domain \(\mathbb { R }\) and range \(\mathrm { h } ( x ) > 0\) ,and satisfies $$\sqrt { \int \mathrm { h } ( x ) \mathrm { d } x } = \int \sqrt { \mathrm { h } ( x ) } \mathrm { d } x$$ (a)By substituting \(\mathrm { h } ( x ) = \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 }\) ,show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 ( y + c ) ,$$ where \(c\) is constant.
(b)Hence find a general expression for \(y\) in terms of \(x\) .
(c)Given that \(\mathrm { h } ( 0 ) = 1\) ,find \(\mathrm { h } ( x )\) .
Edexcel AEA 2007 June Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2290882-b9a4-43ec-a38f-c44d46477242-4_493_1324_279_367} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of a sequence \(S _ { 1 } , S _ { 2 } , S _ { 3 } , \ldots\), of model snowflakes. The first term \(S _ { 1 }\) consists of a single square of side \(a\). To obtain \(S _ { 2 }\), the middle third of each edge is replaced with a new square, of side \(\frac { a } { 3 }\), as shown in Figure 1 . Subsequent terms are obtained by replacing the middle third of each external edge of a new square formed in the previous snowflake, by a square \(\frac { 1 } { 3 }\) of the size, as illustrated by \(S _ { 3 }\) in Figure 1.
  1. Deduce that to form \(S _ { 4 } , 36\) new squares of side \(\frac { a } { 27 }\) must be added to \(S _ { 3 }\).
  2. Show that the perimeters of \(S _ { 2 }\) and \(S _ { 3 }\) are \(\frac { 20 a } { 3 }\) and \(\frac { 28 a } { 3 }\) respectively.
  3. Find the perimeter of \(S _ { n }\).
  4. Describe what happens to the perimeter of \(S _ { n }\) as \(n\) increases.
  5. Find the areas of \(S _ { 1 } , S _ { 2 }\) and \(S _ { 3 }\).
  6. Find the smallest value of the constant \(S\) such that the area of \(S _ { n } < S\), for all values of \(n\).
    \includegraphics[max width=\textwidth, alt={}, center]{f2290882-b9a4-43ec-a38f-c44d46477242-5_590_1041_283_588} Figure 2 shows a sketch of the curve \(C\) with equation \(y = \tan \frac { t } { 2 } , \quad 0 \leq t \leq \frac { \pi } { 2 }\).
    The point \(P\) on \(C\) has coordinates \(\left( x , \tan \frac { x } { 2 } \right)\).
    The vertices of rectangle \(R\) are at \(( x , 0 ) , \left( \frac { x } { 2 } , 0 \right) , \left( \frac { x } { 2 } , \tan \frac { x } { 2 } \right)\) and \(\left( x , \tan \frac { x } { 2 } \right)\) as shown in Figure 2.
Edexcel AEA 2007 June Q7
7.The points \(O , P\) and \(Q\) lie on a circle \(C\) with diameter \(O Q\) .The position vectors of \(P\) and \(Q\) , relative to \(O\) ,are \(\mathbf { p }\) and \(\mathbf { q }\) respectively.
(a)Prove that \(\mathbf { p } . \mathbf { q } = | \mathbf { p } | ^ { 2 }\) . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2290882-b9a4-43ec-a38f-c44d46477242-6_615_714_412_689} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The point \(R\) also lies on \(C\) and \(O P Q R\) is a kite \(K\) as shown in Figure 3.The point \(S\) has position vector,relative to \(O\) ,of \(\lambda \mathbf { q }\) ,where \(\lambda\) is a constant.Given that \(\mathbf { p } = \mathbf { i } + 2 \mathbf { j } - \mathbf { k } , \mathbf { q } = 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k }\) and that \(O Q\) is perpendicular to \(P S\) ,find
(b)the value of \(\lambda\) ,
(c)the position vector of \(R\) ,
(d)the area of \(K\) . Another circle \(C _ { 1 }\) is drawn inside \(K\) so that the 4 sides of the kite are each tangents to \(C _ { 1 }\) .
(e)Find the radius of \(C _ { 1 }\) giving your answer in the form \(( \sqrt { } 2 - 1 ) \sqrt { } n\) ,where \(n\) is an integer. A second kite \(K _ { 1 }\) is similar to \(K\) and is drawn inside \(C _ { 1 }\) .
(f)Find that area of \(K _ { 1 }\) .
Edexcel AEA 2008 June Q1
1.The first and second terms of an arithmetic series are 200 and 197.5 respectively.
The sum to \(n\) terms of the series is \(S _ { n }\) . Find the largest positive value of \(S _ { n }\) .
Edexcel AEA 2008 June Q2
2.The points \(( x , y )\) on the curve \(C\) satisfy $$( x + 1 ) ( x + 2 ) \frac { d y } { d x } = x y$$ The line with equation \(y = 2 x + 5\) is the tangent to \(C\) at a point \(P\) .
(a)Find the coordinates of \(P\) .
(b)Find the equation of \(C\) ,giving your answer in the form \(y = \mathrm { f } ( x )\) .
Edexcel AEA 2008 June Q3
3.(a)Prove that \(\tan 15 ^ { \circ } = 2 - \sqrt { 3 }\)
(b)Solve,for \(0 \leqslant \theta < 360 ^ { \circ }\) , $$\sin \left( \theta + 60 ^ { \circ } \right) \sin \left( \theta - 60 ^ { \circ } \right) = ( 1 - \sqrt { } 3 ) \cos ^ { 2 } \theta$$
\includegraphics[max width=\textwidth, alt={}]{280c36e3-6bb5-44b7-8222-17ce25c1bdbe-3_1008_1343_369_465}
Figure 1 shows a sketch of the curve \(C\) with equation $$y = \cos x \ln ( \sec x ) , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 } .$$ The points \(A\) and \(B\) are maximum points on \(C\) .
(a)Find the coordinates of \(B\) in terms of e . The finite region \(R\) lies between \(C\) and the line \(A B\) .
(b)Show that the area of \(R\) is $$\frac { 2 } { \mathrm { e } } \arccos \left( \frac { 1 } { \mathrm { e } } \right) + 2 \ln \left( \mathrm { e } + \sqrt { } \left( \mathrm { e } ^ { 2 } - 1 \right) \right) - \frac { 4 } { \mathrm { e } } \sqrt { } \left( \mathrm { e } ^ { 2 } - 1 \right) .$$ \(\left[ \arccos x \right.\) is an alternative notation for \(\left. \cos ^ { - 1 } x \right]\)
Edexcel AEA 2008 June Q5
5. (i) Anna, who is confused about the rules for logarithms, states that $$\left( \log _ { 3 } p \right) ^ { 2 } = \log _ { 3 } \left( p ^ { 2 } \right)$$ and \(\quad \log _ { 3 } ( p + q ) = \log _ { 3 } p + \log _ { 3 } q\).
However, there is a value for \(p\) and a value for \(q\) for which both statements are correct.
Find the value of \(p\) and the value of \(q\).
(ii) Solve $$\frac { \log _ { 3 } \left( 3 x ^ { 3 } - 23 x ^ { 2 } + 40 x \right) } { \log _ { 3 } 9 } = 0.5 + \log _ { 3 } ( 3 x - 8 ) .$$
Edexcel AEA 2008 June Q6
6. $$\mathrm { f } ( x ) = \frac { a x + b } { x + 2 } ; \quad x \in \mathbb { R } , x \neq - 2$$ where \(a\) and \(b\) are constants and \(b > 0\) .
(a)Find \(f ^ { - 1 } ( x )\) .
(b)Hence,or otherwise,find the value of \(a\) so that \(\operatorname { ff } ( x ) = x\) . The curve \(C\) has equation \(y = \mathrm { f } ( x )\) and \(\mathrm { f } ( x )\) satisfies \(\mathrm { ff } ( x ) = x\) .
(c)On separate axes sketch
(i)\(y = \mathrm { f } ( x )\) ,
(ii)\(y = \mathrm { f } ( x - 2 ) + 2\) . On each sketch you should indicate the equations of any asymptotes and the coordinates,in terms of \(b\) ,of any intersections with the axes. The normal to \(C\) at the point \(P\) has equation \(y = 4 x - 39\) .The normal to \(C\) at the point \(Q\) has equation \(y = 4 x + k\) ,where \(k\) is a constant.
(d)By considering the images of the normals to \(C\) on the curve with equation \(y = \mathrm { f } ( x - 2 ) + 2\) ,or otherwise,find the value of \(k\) .
Edexcel AEA 2008 June Q7
7. Relative to a fixed origin \(O\), the position vectors of the points \(A , B\) and \(C\) are $$\overrightarrow { O A } = - 3 \mathbf { i } + \mathbf { j } - 9 \mathbf { k } , \quad \overrightarrow { O B } = \mathbf { i } - \mathbf { k } , \quad \overrightarrow { O C } = 5 \mathbf { i } + 2 \mathbf { j } - 5 \mathbf { k } \text { respectively. }$$
  1. Find the cosine of angle \(A B C\). The line \(L\) is the angle bisector of angle \(A B C\).
  2. Show that an equation of \(L\) is \(\mathbf { r } = \mathbf { i } - \mathbf { k } + t ( \mathbf { i } + 2 \mathbf { j } - 7 \mathbf { k } )\).
  3. Show that \(| \overrightarrow { A B } | = | \overrightarrow { A C } |\). The circle \(S\) lies inside triangle \(A B C\) and each side of the triangle is a tangent to \(S\).
  4. Find the position vector of the centre of \(S\).
  5. Find the radius of \(S\).
Edexcel AEA 2009 June Q1
  1. (a) On the same diagram, sketch
$$y = ( x + 1 ) ( 2 - x ) \quad \text { and } \quad y = x ^ { 2 } - 2 | x |$$ Mark clearly the coordinates of the points where these curves cross the coordinate axes.
(b) Find the \(x\)-coordinates of the points of intersection of these two curves.
Edexcel AEA 2009 June Q2
2. The curve \(C\) has equation \(y = x ^ { \sin x } , \quad x > 0\).
  1. Find the equation of the tangent to \(C\) at the point where \(x = \frac { \pi } { 2 }\).
  2. Prove that this tangent touches \(C\) at infinitely many points.
Edexcel AEA 2009 June Q3
3. (a) Solve, for \(0 \leqslant \theta < 2 \pi\), $$\sin \left( \frac { \pi } { 3 } - \theta \right) = \frac { 1 } { \sqrt { } 3 } \cos \theta$$ (b) Find the value of \(x\) for which $$\begin{aligned} & \arcsin ( 1 - 2 x ) = \frac { \pi } { 3 } - \arcsin x , \quad 0 < x < 0.5
& { \left[ \arcsin x \text { is an alternative notation for } \sin ^ { - 1 } x \right] } \end{aligned}$$
Edexcel AEA 2009 June Q4
  1. (a) The function \(\mathrm { f } ( x )\) has \(\mathrm { f } ^ { \prime } ( x ) = \frac { \mathrm { u } ( x ) } { \mathrm { v } ( x ) }\). Given that \(\mathrm { f } ^ { \prime } ( k ) = 0\), show that \(\mathrm { f } ^ { \prime \prime } ( k ) = \frac { \mathrm { u } ^ { \prime } ( k ) } { \mathrm { v } ( k ) }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{dfb57dc0-5831-4bbb-b1e5-58c4798215cb-3_874_879_486_593} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} (b) The curve \(C\) with equation $$y = \frac { 2 x ^ { 2 } + 3 } { x ^ { 2 } - 1 }$$ crosses the \(y\)-axis at the point \(A\). Figure 1 shows a sketch of \(C\) together with its 3 asymptotes.
  1. Find the coordinates of the point \(A\).
  2. Find the equations of the asymptotes of \(C\). The point \(P ( a , b ) , a > 0\) and \(b > 0\), lies on \(C\). The point \(Q\) also lies on \(C\) with \(P Q\) parallel to the \(x\)-axis and \(A P = A Q\).
  3. Show that the area of triangle \(P A Q\) is given by \(\frac { 5 a ^ { 3 } } { a ^ { 2 } - 1 }\).
  4. Find, as \(a\) varies, the minimum area of triangle \(P A Q\), giving your answer in its simplest form.
Edexcel AEA 2009 June Q5
5.(a)The sides of the triangle \(A B C\) have lengths \(B C = a , A C = b\) and \(A B = c\) ,where \(a < b < c\) .The sizes of the angles \(A , B\) and \(C\) form an arithmetic sequence.
(i)Show that the area of triangle \(A B C\) is \(a c \frac { \sqrt { 3 } } { 4 }\) . Given that \(a = 2\) and \(\sin A = \frac { \sqrt { } 15 } { 5 }\) ,find
(ii)the value of \(b\) ,
(iii)the value of \(c\) .
(b)The internal angles of an \(n\)-sided polygon form an arithmetic sequence with first term \(143 ^ { \circ }\) and common difference \(2 ^ { \circ }\) . Given that all of the internal angles are less than \(180 ^ { \circ }\) ,find the value of \(n\) .