Edexcel AEA 2007 June — Question 7

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2007
SessionJune
TopicVectors: Lines & Planes

7.The points \(O , P\) and \(Q\) lie on a circle \(C\) with diameter \(O Q\) .The position vectors of \(P\) and \(Q\) , relative to \(O\) ,are \(\mathbf { p }\) and \(\mathbf { q }\) respectively.
(a)Prove that \(\mathbf { p } . \mathbf { q } = | \mathbf { p } | ^ { 2 }\) . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2290882-b9a4-43ec-a38f-c44d46477242-6_615_714_412_689} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The point \(R\) also lies on \(C\) and \(O P Q R\) is a kite \(K\) as shown in Figure 3.The point \(S\) has position vector,relative to \(O\) ,of \(\lambda \mathbf { q }\) ,where \(\lambda\) is a constant.Given that \(\mathbf { p } = \mathbf { i } + 2 \mathbf { j } - \mathbf { k } , \mathbf { q } = 2 \mathbf { i } + \mathbf { j } - 2 \mathbf { k }\) and that \(O Q\) is perpendicular to \(P S\) ,find
(b)the value of \(\lambda\) ,
(c)the position vector of \(R\) ,
(d)the area of \(K\) . Another circle \(C _ { 1 }\) is drawn inside \(K\) so that the 4 sides of the kite are each tangents to \(C _ { 1 }\) .
(e)Find the radius of \(C _ { 1 }\) giving your answer in the form \(( \sqrt { } 2 - 1 ) \sqrt { } n\) ,where \(n\) is an integer. A second kite \(K _ { 1 }\) is similar to \(K\) and is drawn inside \(C _ { 1 }\) .
(f)Find that area of \(K _ { 1 }\) .