| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2006 |
| Session | June |
| Topic | Vectors: Cross Product & Distances |
5.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have vector equations
\(L _ { 1 } : \quad \mathbf { r } = - 2 \mathbf { i } + 11.5 \mathbf { j } + \lambda ( 3 \mathbf { i } - 4 \mathbf { j } - \mathbf { k } )\),
\(L _ { 2 } : \quad \mathbf { r } = 11.5 \mathbf { i } + 3 \mathbf { j } + 8.5 \mathbf { k } + \mu ( 7 \mathbf { i } + 8 \mathbf { j } - 11 \mathbf { k } )\),
where \(\lambda\) and \(\mu\) are parameters.
(a)Show that \(L _ { 1 }\) and \(L _ { 2 }\) do not intersect.
(b)Show that the vector \(( 2 \mathbf { i } + \mathbf { j } + 2 \mathbf { k } )\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) .
The point \(A\) lies on \(L _ { 1 }\) ,the point \(B\) lies on \(L _ { 2 }\) and \(A B\) is perpendicular to both \(L _ { 1 }\) and \(L _ { 2 }\) .
(c)Find the position vector of the point \(A\) and the position vector of the point \(B\) .
(8)
\includegraphics[max width=\textwidth, alt={}, center]{0df09d8a-7478-4679-b117-128ee226db6a-4_554_1017_404_571}
Figure 1 shows a sketch of part of the curve \(C\) with equation
$$y = \sin ( \ln x ) , \quad x \geq 1 .$$
The point \(Q\) ,on \(C\) ,is a maximum.