1.(a)Write down the binomial expansion of \(\frac { 1 } { ( 1 - y ) ^ { 2 } } , | y | < 1\) ,in ascending powers of \(y\) up to and including the term in \(y ^ { 3 }\) .
(b)Hence,or otherwise,show that
$$\frac { 1 } { 4 } \operatorname { cosec } ^ { 4 } \left( \frac { \theta } { 2 } \right) = 1 + 2 \cos \theta + 3 \cos ^ { 2 } \theta + 4 \cos ^ { 3 } \theta + \ldots + ( r + 1 ) \cos ^ { r } \theta + \ldots$$
and state the values of \(\theta\) for which this result is not valid.
(4)
Find
(c)
$$\begin{aligned}
& 1 + \frac { 2 } { 2 } + \frac { 3 } { 2 ^ { 2 } } + \frac { 4 } { 2 ^ { 3 } } + \ldots + \frac { ( r + 1 ) } { 2 ^ { r } } + \ldots
& 1 - \frac { 2 } { 2 } + \frac { 3 } { 2 ^ { 2 } } - \frac { 4 } { 2 ^ { 3 } } + \ldots + ( - 1 ) ^ { r } \frac { ( r + 1 ) } { 2 ^ { r } } + \ldots
\end{aligned}$$
(d)