Edexcel AEA 2009 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2009
SessionJune
TopicProduct & Quotient Rules

  1. (a) The function \(\mathrm { f } ( x )\) has \(\mathrm { f } ^ { \prime } ( x ) = \frac { \mathrm { u } ( x ) } { \mathrm { v } ( x ) }\). Given that \(\mathrm { f } ^ { \prime } ( k ) = 0\), show that \(\mathrm { f } ^ { \prime \prime } ( k ) = \frac { \mathrm { u } ^ { \prime } ( k ) } { \mathrm { v } ( k ) }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{dfb57dc0-5831-4bbb-b1e5-58c4798215cb-3_874_879_486_593} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} (b) The curve \(C\) with equation $$y = \frac { 2 x ^ { 2 } + 3 } { x ^ { 2 } - 1 }$$ crosses the \(y\)-axis at the point \(A\). Figure 1 shows a sketch of \(C\) together with its 3 asymptotes.
  1. Find the coordinates of the point \(A\).
  2. Find the equations of the asymptotes of \(C\). The point \(P ( a , b ) , a > 0\) and \(b > 0\), lies on \(C\). The point \(Q\) also lies on \(C\) with \(P Q\) parallel to the \(x\)-axis and \(A P = A Q\).
  3. Show that the area of triangle \(P A Q\) is given by \(\frac { 5 a ^ { 3 } } { a ^ { 2 } - 1 }\).
  4. Find, as \(a\) varies, the minimum area of triangle \(P A Q\), giving your answer in its simplest form.