| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2007 |
| Session | June |
| Topic | Areas Between Curves |
2.(a)On the same diagram,sketch \(y = x\) and \(y = \sqrt { } x\) ,for \(x \geq 0\) ,and mark clearly the coordinates of the points of intersection of the two graphs.
(b)With reference to your sketch,explain why there exists a value \(a\) of \(x ( a > 1 )\) such that
$$\int _ { 0 } ^ { a } x \mathrm {~d} x = \int _ { 0 } ^ { a } \sqrt { } x \mathrm {~d} x$$
(c)Find the exact value of \(a\) .
(d)Hence,or otherwise,find a non-constant function \(\mathrm { f } ( x )\) and a constant \(b ( b \neq 0 )\) such that
$$\int _ { - b } ^ { b } \mathrm { f } ( x ) \mathrm { d } x = \int _ { - b } ^ { b } \sqrt { } [ \mathrm { f } ( x ) ] \mathrm { d } x$$