| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2007 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
4.The function \(\mathrm { h } ( x )\) has domain \(\mathbb { R }\) and range \(\mathrm { h } ( x ) > 0\) ,and satisfies
$$\sqrt { \int \mathrm { h } ( x ) \mathrm { d } x } = \int \sqrt { \mathrm { h } ( x ) } \mathrm { d } x$$
(a)By substituting \(\mathrm { h } ( x ) = \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 }\) ,show that
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 ( y + c ) ,$$
where \(c\) is constant.
(b)Hence find a general expression for \(y\) in terms of \(x\) .
(c)Given that \(\mathrm { h } ( 0 ) = 1\) ,find \(\mathrm { h } ( x )\) .