Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2018 June Q11 OR
Let \(V\) be the subspace of \(\mathbb { R } ^ { 4 }\) spanned by $$\mathbf { v } _ { 1 } = \left( \begin{array} { l } 1
2
0
2 \end{array} \right) , \quad \mathbf { v } _ { 2 } = \left( \begin{array} { r } - 2
- 5
5
6 \end{array} \right) , \quad \mathbf { v } _ { 3 } = \left( \begin{array} { r } 0
- 3
CAIE FP1 2018 June Q18
18 \end{array} \right) \quad \text { and } \quad \mathbf { v } _ { 4 } = \left( \begin{array} { r } 0
- 2
10
8 \end{array} \right) .$$
  1. Show that the dimension of \(V\) is 3 .
  2. Express \(\mathbf { v } _ { 4 }\) as a linear combination of \(\mathbf { v } _ { 1 } , \mathbf { v } _ { 2 }\) and \(\mathbf { v } _ { 3 }\).
  3. Write down a basis for \(V\).
    Let \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & 0
    2 & - 5 & - 3 & - 2
    0 & 5 & 15 & 10
    2 & 6 & 18 & 8 \end{array} \right)\).
  4. Find the general solution of \(\mathbf { M x } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 }\).
    The set of elements of \(\mathbb { R } ^ { 4 }\) which are not solutions of \(\mathbf { M x } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 }\) is denoted by \(W\).
  5. State, with a reason, whether \(W\) is a vector space.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2019 June Q1
1 A curve \(C\) has equation \(\cos y = x\), for \(- \pi < x < \pi\).
  1. Use implicit differentiation to show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \cot y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 }$$
  2. Hence find the exact value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( \frac { 1 } { 2 } , \frac { 1 } { 3 } \pi \right)\) on \(C\).
CAIE FP1 2019 June Q2
2 Let \(u _ { n } = \frac { 4 \sin \left( n - \frac { 1 } { 2 } \right) \sin \frac { 1 } { 2 } } { \cos ( 2 n - 1 ) + \cos 1 }\).
  1. Using the formulae for \(\cos P \pm \cos Q\) given in the List of Formulae MF10, show that $$u _ { n } = \frac { 1 } { \cos n } - \frac { 1 } { \cos ( n - 1 ) }$$
  2. Use the method of differences to find \(\sum _ { n = 1 } ^ { N } u _ { n }\).
  3. Explain why the infinite series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) does not converge.
CAIE FP1 2019 June Q3
3 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 6 \mathbf { i } + 2 \mathbf { j } + 7 \mathbf { k } + \lambda ( \mathbf { i } + \mathbf { j } )\) and \(\mathbf { r } = 4 \mathbf { i } + 4 \mathbf { j } + \mu ( - 6 \mathbf { j } + \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Find the position vectors of \(P\) and \(Q\).
CAIE FP1 2019 June Q4
4 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { x ^ { 3 } } \mathrm {~d} x$$
  1. Show that \(I _ { 2 } = \frac { 1 } { 3 } ( \mathrm { e } - 1 )\).
  2. Show that, for \(n \geqslant 3\), $$3 I _ { n } = \mathrm { e } - ( n - 2 ) I _ { n - 3 }$$
  3. Hence find the exact value of \(I _ { 8 }\).
CAIE FP1 2019 June Q5
5 A curve \(C\) is defined parametrically by $$x = \frac { 2 } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } } \quad \text { and } \quad y = \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } }$$ for \(0 \leqslant t \leqslant 1\). The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\).
  1. Show that \(S = 4 \pi \int _ { 0 } ^ { 1 } \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \left( \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } \right) ^ { 2 } } \mathrm {~d} t\).
  2. Using the substitution \(u = \mathrm { e } ^ { t } + \mathrm { e } ^ { - t }\), or otherwise, find \(S\) in terms of \(\pi\) and e .
CAIE FP1 2019 June Q6
6 The equation $$x ^ { 3 } - x + 1 = 0$$ has roots \(\alpha , \beta , \gamma\).
  1. Use the relation \(x = y ^ { \frac { 1 } { 3 } }\) to show that the equation $$y ^ { 3 } + 3 y ^ { 2 } + 2 y + 1 = 0$$ has roots \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }\). Hence write down the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
    Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n }\).
  2. Find the value of \(S _ { - 3 }\).
  3. Show that \(S _ { 6 } = 5\) and find the value of \(S _ { 9 }\).
CAIE FP1 2019 June Q7
7 Find the particular solution of the differential equation $$10 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - x = t + 2$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2019 June Q8
8
  1. Prove by mathematical induction that, for \(z \neq 1\) and all positive integers \(n\), $$1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = \frac { z ^ { n } - 1 } { z - 1 }$$
  2. By letting \(z = \frac { 1 } { 2 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to deduce that $$\sum _ { m = 1 } ^ { \infty } \left( \frac { 1 } { 2 } \right) ^ { m } \sin m \theta = \frac { 2 \sin \theta } { 5 - 4 \cos \theta }$$
CAIE FP1 2019 June Q9
9 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\), with corresponding eigenvalue \(\lambda ^ { 2 }\).
    The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { c c c } n & 1 & 3
    0 & 2 n & 0
    0 & 0 & 3 n \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + n \mathbf { I } ) ^ { 2 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(n\) is a non-zero integer.
  2. Find, in terms of \(n\), a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { B } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
CAIE FP1 2019 June Q10
10 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$y = \frac { a x } { x + 5 } \quad \text { and } \quad y = \frac { x ^ { 2 } + ( a + 10 ) x + 5 a + 26 } { x + 5 }$$ respectively, where \(a\) is a constant and \(a > 2\).
  1. Find the equations of the asymptotes of \(C _ { 1 }\).
  2. Find the equation of the oblique asymptote of \(C _ { 2 }\).
  3. Show that \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
  4. Find the coordinates of the stationary points of \(C _ { 2 }\).
  5. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on a single diagram. [You do not need to calculate the coordinates of any points where \(C _ { 2 }\) crosses the axes.]
CAIE FP1 2019 June Q11 EITHER
The curve \(C _ { 1 }\) has polar equation \(r ^ { 2 } = 2 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. The point on \(C _ { 1 }\) furthest from the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(P\). Show that, at \(P\), $$2 \theta \tan \theta = 1$$ and verify that this equation has a root between 0.6 and 0.7 .
    The curve \(C _ { 2 }\) has polar equation \(r ^ { 2 } = \theta \sec ^ { 2 } \theta\), for \(0 \leqslant \theta < \frac { 1 } { 2 } \pi\). The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the pole, denoted by \(O\), and at another point \(Q\).
  2. Find the exact value of \(\theta\) at \(Q\).
  3. The diagram below shows the curve \(C _ { 2 }\). Sketch \(C _ { 1 }\) on this diagram.
  4. Find, in exact form, the area of the region \(O P Q\) enclosed by \(C _ { 1 }\) and \(C _ { 2 }\).
CAIE FP1 2019 June Q11 OR
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\mathbf { M } = \left( \begin{array} { r r r r } - 1 & 2 & 3 & 4
1 & 0 & 1 & - 1
1 & - 2 & - 3 & a
1 & 2 & 5 & 2 \end{array} \right) .$$
  1. For \(a \neq - 4\), the range space of T is denoted by \(V\).
    (a) Find the dimension of \(V\) and show that $$\left( \begin{array} { r } - 1
    1
    1
    1 \end{array} \right) , \quad \left( \begin{array} { r } 2
    0
    - 2
    2 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 4
    - 1
    a
    2 \end{array} \right)$$ form a basis for \(V\).
    (b) Show that if \(\left( \begin{array} { l } x
    y
    z
    t \end{array} \right)\) belongs to \(V\) then \(x + 2 y = t\).
  2. For \(a = - 4\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } - 1
    1
    1
    1 \end{array} \right)$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2019 June Q1
1 Prove by mathematical induction that \(3 ^ { 3 n } - 1\) is divisible by 13 for every positive integer \(n\).
CAIE FP1 2019 June Q2
2 The curve \(C\) has polar equation \(r ^ { 2 } = \ln ( 1 + \theta )\), for \(0 \leqslant \theta \leqslant 2 \pi\).
  1. Sketch \(C\).
  2. Using the substitution \(u = 1 + \theta\), or otherwise, find the area of the region bounded by \(C\) and the initial line, leaving your answer in an exact form.
CAIE FP1 2019 June Q3
3
  1. Write down the fifth roots of unity.
  2. Find all the roots of the equation $$z ^ { 10 } + z ^ { 5 } + 1 = 0$$ giving each root in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\).
CAIE FP1 2019 June Q4
4
  1. Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 3 r + 1 ) ( 3 r - 2 ) } = \frac { 1 } { 3 } - \frac { 1 } { 3 ( 3 N + 1 ) }\).
  2. Find the limit, as \(N \rightarrow \infty\), of \(\sum _ { r = N + 1 } ^ { N ^ { 2 } } \frac { N } { ( 3 r + 1 ) ( 3 r - 2 ) }\).
CAIE FP1 2019 June Q5
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & 2 & 0 & 4
5 & 2 & 1 & - 3
4 & 0 & 1 & - 7
- 2 & 4 & - 1 & \alpha \end{array} \right)$$ It is given that the rank of \(\mathbf { M }\) is 2 .
  1. Find the value of \(\alpha\) and state a basis for the range space of T .
  2. Obtain a basis for the null space of T .
CAIE FP1 2019 June Q6
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { k x - 1 }$$ where \(k\) is a positive constant.
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the coordinates of the stationary points of \(C\).
  3. Sketch \(C\).
CAIE FP1 2019 June Q7
7 The line \(l _ { 1 }\) passes through the points \(A ( - 3,1,4 )\) and \(B ( - 1,5,9 )\). The line \(l _ { 2 }\) passes through the points \(C ( - 2,6,5 )\) and \(D ( - 1,7,5 )\).
  1. Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
  2. Find the acute angle between the line \(l _ { 2 }\) and the plane containing \(A , B\) and \(D\).
CAIE FP1 2019 June Q8
8 Find the particular solution of the differential equation $$9 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 50 \sin t$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2019 June Q9
9 A cubic equation \(x ^ { 3 } + b x ^ { 2 } + c x + d = 0\) has real roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } & = - \frac { 5 } { 12 }
\alpha \beta \gamma & = - 12
\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = 90 \end{aligned}$$
  1. Find the values of \(c\) and \(d\).
  2. Express \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\) in terms of \(b\).
  3. Show that \(b ^ { 3 } - 15 b + 126 = 0\).
  4. Given that \(3 + \mathrm { i } \sqrt { } ( 12 )\) is a root of \(y ^ { 3 } - 15 y + 126 = 0\), deduce the value of \(b\).
CAIE FP1 2019 June Q10
10 Let \(I _ { n } = \int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 2 } \pi } \cot ^ { n } x \mathrm {~d} x\), where \(n \geqslant 0\).
  1. By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cot ^ { n + 1 } x \right)\), or otherwise, show that $$I _ { n + 2 } = \frac { 1 } { n + 1 } - I _ { n }$$ The curve \(C\) has equation \(y = \cot x\), for \(\frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  2. Find, in an exact form, the \(y\)-coordinate of the centroid of the region enclosed by \(C\), the line \(x = \frac { 1 } { 4 } \pi\) and the \(x\)-axis.
CAIE FP1 2019 June Q11 EITHER
A \(3 \times 3\) matrix \(\mathbf { A }\) has distinct eigenvalues 2, 1, 3, with corresponding eigenvectors $$\left( \begin{array} { l } 1
1
0 \end{array} \right) , \quad \left( \begin{array} { r } - 1
0
b \end{array} \right) , \quad \left( \begin{array} { r } 0
1
- 1 \end{array} \right)$$ respectively, where \(b\) is a positive constant.
  1. Find \(\mathbf { A }\) in terms of \(b\).
  2. Find \(\mathbf { A } ^ { - 1 } \left( \begin{array} { r } 0
    2
    - 2 \end{array} \right)\).
  3. It is given that $$\mathbf { A } ^ { n } \left( \begin{array} { l } 1
    1
    0 \end{array} \right) = \left( \begin{array} { l } 4
    4
    0 \end{array} \right) \quad \text { and } \quad \mathbf { A } ^ { n } \left( \begin{array} { r } - 1
    0
    b \end{array} \right) = \left( \begin{array} { c } - 1
    0
    b ^ { - 1 } \end{array} \right) .$$ Find the values of \(n\) and \(b\).