CAIE FP1 2018 June — Question 18

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionJune
TopicGroups

18 \end{array} \right) \quad \text { and } \quad \mathbf { v } _ { 4 } = \left( \begin{array} { r } 0
- 2
10
8 \end{array} \right) .$$
  1. Show that the dimension of \(V\) is 3 .
  2. Express \(\mathbf { v } _ { 4 }\) as a linear combination of \(\mathbf { v } _ { 1 } , \mathbf { v } _ { 2 }\) and \(\mathbf { v } _ { 3 }\).
  3. Write down a basis for \(V\).
    Let \(\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & 0 & 0
    2 & - 5 & - 3 & - 2
    0 & 5 & 15 & 10
    2 & 6 & 18 & 8 \end{array} \right)\).
  4. Find the general solution of \(\mathbf { M x } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 }\).
    The set of elements of \(\mathbb { R } ^ { 4 }\) which are not solutions of \(\mathbf { M x } = \mathbf { v } _ { 1 } + \mathbf { v } _ { 2 }\) is denoted by \(W\).
  5. State, with a reason, whether \(W\) is a vector space.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.