CAIE FP1 2019 June — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
TopicParametric equations

5 A curve \(C\) is defined parametrically by $$x = \frac { 2 } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } } \quad \text { and } \quad y = \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } }$$ for \(0 \leqslant t \leqslant 1\). The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\).
  1. Show that \(S = 4 \pi \int _ { 0 } ^ { 1 } \frac { \mathrm { e } ^ { t } - \mathrm { e } ^ { - t } } { \left( \mathrm { e } ^ { t } + \mathrm { e } ^ { - t } \right) ^ { 2 } } \mathrm {~d} t\).
  2. Using the substitution \(u = \mathrm { e } ^ { t } + \mathrm { e } ^ { - t }\), or otherwise, find \(S\) in terms of \(\pi\) and e .