CAIE FP1 2019 June — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
TopicInvariant lines and eigenvalues and vectors

9 It is given that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\).
  1. Show that \(\mathbf { e }\) is an eigenvector of \(\mathbf { A } ^ { 2 }\), with corresponding eigenvalue \(\lambda ^ { 2 }\).
    The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { c c c } n & 1 & 3
    0 & 2 n & 0
    0 & 0 & 3 n \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + n \mathbf { I } ) ^ { 2 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(n\) is a non-zero integer.
  2. Find, in terms of \(n\), a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { B } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).