Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2008 June Q1
1 The finite region enclosed by the line \(y = k x\), where \(k\) is a positive constant, the \(x\)-axis for \(0 \leqslant x \leqslant h\), and the line \(x = h\) is rotated through 1 complete revolution about the \(x\)-axis. Prove by integration that the centroid of the resulting cone is at a distance \(\frac { 3 } { 4 } h\) from the origin \(O\).
[0pt] [The volume of a cone of height \(h\) and base radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
CAIE FP1 2008 June Q2
2 Given that $$u _ { n } = \ln \left( \frac { 1 + x ^ { n + 1 } } { 1 + x ^ { n } } \right)$$ where \(x > - 1\), find \(\sum _ { n = 1 } ^ { N } u _ { n }\) in terms of \(N\) and \(x\). Find the sum to infinity of the series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ when
  1. \(- 1 < x < 1\),
  2. \(x = 1\).
CAIE FP1 2008 June Q3
3 Show that if \(\lambda\) is an eigenvalue of the square matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the square matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector, then \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector. The matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & - 1 & 0
- 4 & - 6 & - 6
5 & 11 & 10 \end{array} \right)$$ has \(\left( \begin{array} { r } 1
- 1
1 \end{array} \right)\) as an eigenvector. Find the corresponding eigenvalue. The other two eigenvalues of \(\mathbf { A }\) are 1 and 2, with corresponding eigenvectors \(\left( \begin{array} { r } 1
2
- 3 \end{array} \right)\) and \(\left( \begin{array} { r } 1
1
- 2 \end{array} \right)\) respectively. The matrix \(\mathbf { B }\) has eigenvalues \(2,3,1\) with corresponding eigenvectors \(\left( \begin{array} { r } 1
- 1
1 \end{array} \right) , \left( \begin{array} { r } 1
2
- 3 \end{array} \right)\), \(\left( \begin{array} { r } 1
1
- 2 \end{array} \right)\) respectively. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 4 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
[0pt] [You are not required to evaluate \(\mathbf { P } ^ { - 1 }\).]
CAIE FP1 2008 June Q4
4 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$r = \theta + 2 \quad \text { and } \quad r = \theta ^ { 2 }$$ respectively, where \(0 \leqslant \theta \leqslant \pi\).
  1. Find the polar coordinates of the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
  2. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  3. Find the area bounded by \(C _ { 1 } , C _ { 2 }\) and the line \(\theta = 0\).
CAIE FP1 2008 June Q5
5 The equation $$x ^ { 3 } + x - 1 = 0$$ has roots \(\alpha , \beta , \gamma\). Show that the equation with roots \(\alpha ^ { 3 } , \beta ^ { 3 } , \gamma ^ { 3 }\) is $$y ^ { 3 } - 3 y ^ { 2 } + 4 y - 1 = 0$$ Hence find the value of \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 }\).
CAIE FP1 2008 June Q6
6 The curve \(C\) is defined parametrically by $$x = 4 t - t ^ { 2 } \quad \text { and } \quad y = 1 - \mathrm { e } ^ { - t }$$ where \(0 \leqslant t < 2\). Show that at all points of \(C\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { ( t - 1 ) \mathrm { e } ^ { - t } } { 4 ( 2 - t ) ^ { 3 } }$$ Show that the mean value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \frac { 7 } { 4 }\) is $$\frac { 4 e ^ { - \frac { 1 } { 2 } } - 3 } { 21 }$$
CAIE FP1 2008 June Q7
7 Prove by induction that $$\sum _ { r = 1 } ^ { n } \left( 3 r ^ { 5 } + r ^ { 3 } \right) = \frac { 1 } { 2 } n ^ { 3 } ( n + 1 ) ^ { 3 }$$ for all \(n \geqslant 1\). Use this result together with the List of Formulae (MF10) to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 5 } = \frac { 1 } { 12 } n ^ { 2 } ( n + 1 ) ^ { 2 } \mathrm { Q } ( n )$$ where \(\mathrm { Q } ( n )\) is a quadratic function of \(n\) which is to be determined.
CAIE FP1 2008 June Q8
8
  1. Given that $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } t ^ { n } \sin t \mathrm {~d} t$$ show that, for \(n \geqslant 2\), $$I _ { n } = n \left( \frac { \pi } { 2 } \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 } .$$
  2. A curve \(C\) in the \(x - y\) plane is defined parametrically in terms of \(t\). It is given that $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t ^ { 4 } ( 1 - \cos 2 t ) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = t ^ { 4 } \sin 2 t .$$ Find the length of the arc of \(C\) from the point where \(t = 0\) to the point where \(t = \frac { 1 } { 2 } \pi\).
CAIE FP1 2008 June Q9
9 The curve \(C\) has equation $$y = \frac { x ^ { 2 } - 2 x + \lambda } { x + 1 }$$ where \(\lambda\) is a constant. Show that the equations of the asymptotes of \(C\) are independent of \(\lambda\). Find the value of \(\lambda\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case. Sketch \(C\) in the case \(\lambda = - 4\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
CAIE FP1 2008 June Q10
10 By considering \(\sum _ { n = 1 } ^ { N } z ^ { 2 n - 1 }\), where \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), show that $$\sum _ { n = 1 } ^ { N } \cos ( 2 n - 1 ) \theta = \frac { \sin ( 2 N \theta ) } { 2 \sin \theta }$$ where \(\sin \theta \neq 0\). Deduce that $$\sum _ { n = 1 } ^ { N } ( 2 n - 1 ) \sin \left[ \frac { ( 2 n - 1 ) \pi } { N } \right] = - N \operatorname { cosec } \frac { \pi } { N }$$
CAIE FP1 2008 June Q11
11 Show that, with a suitable value of the constant \(\alpha\), the substitution \(y = x ^ { \alpha } w\) reduces the differential equation $$2 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( 3 x ^ { 2 } + 8 x \right) \frac { \mathrm { d } y } { \mathrm {~d} x } + \left( x ^ { 2 } + 6 x + 4 \right) y = \mathrm { f } ( x )$$ to $$2 \frac { \mathrm {~d} ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = \mathrm { f } ( x )$$ Find the general solution for \(y\) in the case where \(\mathrm { f } ( x ) = 6 \sin 2 x + 7 \cos 2 x\).
CAIE FP1 2008 June Q12 EITHER
The position vectors of the points \(A , B , C , D\) are
\(7 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\),
\(3 \mathbf { i } + 5 \mathbf { j } - 2 \mathbf { k }\),
\(2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k }\),
\(2 \mathbf { i } + 7 \mathbf { j } + \lambda \mathbf { k }\)
respectively. It is given that the shortest distance between the line \(A B\) and the line \(C D\) is 3 .
  1. Show that \(\lambda ^ { 2 } - 5 \lambda + 4 = 0\).
  2. Find the acute angle between the planes through \(A , B , D\) corresponding to the values of \(\lambda\) satisfying the equation in part (i).
CAIE FP1 2008 June Q12 OR
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\left( \begin{array} { r r r r } 1 & 2 & - 1 & - 1
1 & 3 & - 1 & 0
1 & 0 & 3 & 1
0 & 3 & - 4 & - 1 \end{array} \right) .$$ The range space of T is denoted by \(V\).
  1. Determine the dimension of \(V\).
  2. Show that the vectors \(\left( \begin{array} { l } 1
    1
    1
    0 \end{array} \right) , \left( \begin{array} { l } 2
    3
    0
    3 \end{array} \right) , \left( \begin{array} { r } - 1
    - 1
    3
    - 4 \end{array} \right)\) are linearly independent.
  3. Write down a basis of \(V\). The set of elements of \(\mathbb { R } ^ { 4 }\) which do not belong to \(V\) is denoted by \(W\).
  4. State, with a reason, whether \(W\) is a vector space.
  5. Show that if the vector \(\left( \begin{array} { l } x
    y
    z
    t \end{array} \right)\) belongs to \(W\) then \(y - z - t \neq 0\).
CAIE FP1 2009 June Q1
1 The equation $$x ^ { 4 } - x ^ { 3 } - 1 = 0$$ has roots \(\alpha , \beta , \gamma , \delta\). By using the substitution \(y = x ^ { 3 }\), or by any other method, find the exact value of \(\alpha ^ { 6 } + \beta ^ { 6 } + \gamma ^ { 6 } + \delta ^ { 6 }\).
CAIE FP1 2009 June Q2
2 Verify that, for all positive values of \(n\), $$\frac { 1 } { ( n + 2 ) ( 2 n + 3 ) } - \frac { 1 } { ( n + 3 ) ( 2 n + 5 ) } = \frac { 4 n + 9 } { ( n + 2 ) ( n + 3 ) ( 2 n + 3 ) ( 2 n + 5 ) } .$$ For the series $$\sum _ { n = 1 } ^ { N } \frac { 4 n + 9 } { ( n + 2 ) ( n + 3 ) ( 2 n + 3 ) ( 2 n + 5 ) }$$ find
  1. the sum to \(N\) terms,
  2. the sum to infinity.
CAIE FP1 2009 June Q3
3 The equation of a curve is \(y = \lambda x ^ { 2 }\), where \(\lambda > 0\). The region bounded by the curve, the \(x\)-axis and the line \(x = a\), where \(a > 0\), is denoted by \(R\). The \(y\)-coordinate of the centroid of \(R\) is \(a\). Show that \(\lambda = \frac { 10 } { 3 a }\).
CAIE FP1 2009 June Q4
4 A curve has equation $$y = \frac { 1 } { 3 } x ^ { 3 } + 1$$ The length of the arc of the curve joining the point where \(x = 0\) to the point where \(x = 1\) is denoted by \(s\). Show that $$s = \int _ { 0 } ^ { 1 } \sqrt { } \left( 1 + x ^ { 4 } \right) \mathrm { d } x$$ The surface area generated when this arc is rotated through one complete revolution about the \(x\)-axis is denoted by \(S\). Show that $$S = \frac { 1 } { 9 } \pi ( 18 s + 2 \sqrt { } 2 - 1 )$$ [Do not attempt to evaluate \(s\) or \(S\).]
CAIE FP1 2009 June Q5
5 Draw a sketch of the curve \(C\) whose polar equation is \(r = \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). On the same diagram draw the line \(\theta = \alpha\), where \(0 < \alpha < \frac { 1 } { 2 } \pi\). The region bounded by \(C\) and the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(R\). Find the exact value of \(\alpha\) for which the line \(\theta = \alpha\) divides \(R\) into two regions of equal area.
CAIE FP1 2009 June Q6
6 A curve has equation $$( x + y ) \left( x ^ { 2 } + y ^ { 2 } \right) = 1$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 0,1 )\).
CAIE FP1 2009 June Q7
7 Let $$I _ { n } = \int _ { 0 } ^ { 1 } t ^ { n } \mathrm { e } ^ { - t } \mathrm {~d} t$$ where \(n \geqslant 0\). Show that, for all \(n \geqslant 1\), $$I _ { n } = n I _ { n - 1 } - \mathrm { e } ^ { - 1 }$$ Hence prove by induction that, for all positive integers \(n\), $$I _ { n } < n ! .$$
CAIE FP1 2009 June Q8
8 Find the general solution of the differential equation $$4 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 65 y = 65 x ^ { 2 } + 8 x + 73$$ Show that, whatever the initial conditions, \(\frac { y } { x ^ { 2 } } \rightarrow 1\) as \(x \rightarrow \infty\).
CAIE FP1 2009 June Q9
9 The matrix $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & 4
1 & 5 & - 1
2 & 1 & 5 \end{array} \right)$$ has eigenvalues \(1,5,7\). Find a set of corresponding eigenvectors. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { n } = \mathbf { P D P } ^ { - 1 }\).
[0pt] [The evaluation of \(\mathbf { P } ^ { - 1 }\) is not required.]
Determine the set of values of the real constant \(k\) such that \(k ^ { n } \mathbf { A } ^ { n }\) tends to the zero matrix as \(n \rightarrow \infty\).
CAIE FP1 2009 June Q10
10 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { x + \lambda }$$ where \(\lambda\) is a non-zero constant. Obtain the equation of each of the asymptotes of \(C\). In separate diagrams, sketch \(C\) for the cases \(\lambda > 0\) and \(\lambda < 0\). In both cases the coordinates of the turning points must be indicated.
CAIE FP1 2009 June Q11
11 The line \(l _ { 1 }\) is parallel to the vector \(4 \mathbf { j } - \mathbf { k }\) and passes through the point \(A\) whose position vector is \(2 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }\). The variable line \(l _ { 2 }\) is parallel to the vector \(\mathbf { i } - ( 2 \sin t ) \mathbf { j }\), where \(0 \leqslant t < 2 \pi\), and passes through the point \(B\) whose position vector is \(\mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\). The points \(P\) and \(Q\) are on \(l _ { 1 }\) and \(l _ { 2 }\), respectively, and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\) in terms of \(t\).
  2. Hence find the values of \(t\) for which \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  3. For the case \(t = \frac { 1 } { 4 } \pi\), find the perpendicular distance from \(A\) to the plane \(B P Q\), giving your answer correct to 3 decimal places.
CAIE FP1 2009 June Q12 EITHER
By considering \(\sum _ { k = 0 } ^ { n - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { k }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \cos k \theta \sec ^ { k } \theta = \cot \theta \sin n \theta \sec ^ { n } \theta$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\). Hence or otherwise show that $$\sum _ { k = 0 } ^ { n - 1 } 2 ^ { k } \cos \left( \frac { 1 } { 3 } k \pi \right) = \frac { 2 ^ { n } } { \sqrt { 3 } } \sin \left( \frac { 1 } { 3 } n \pi \right)$$ Given that \(0 < x < 1\), show that $$\sum _ { k = 0 } ^ { n - 1 } \frac { \cos \left( k \cos ^ { - 1 } x \right) } { x ^ { k } } = \frac { \sin \left( n \cos ^ { - 1 } x \right) } { x ^ { n - 1 } \sqrt { } \left( 1 - x ^ { 2 } \right) }$$