CAIE FP1 2008 June — Question 12 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2008
SessionJune
Topic3x3 Matrices

The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\left( \begin{array} { r r r r } 1 & 2 & - 1 & - 1
1 & 3 & - 1 & 0
1 & 0 & 3 & 1
0 & 3 & - 4 & - 1 \end{array} \right) .$$ The range space of T is denoted by \(V\).
  1. Determine the dimension of \(V\).
  2. Show that the vectors \(\left( \begin{array} { l } 1
    1
    1
    0 \end{array} \right) , \left( \begin{array} { l } 2
    3
    0
    3 \end{array} \right) , \left( \begin{array} { r } - 1
    - 1
    3
    - 4 \end{array} \right)\) are linearly independent.
  3. Write down a basis of \(V\). The set of elements of \(\mathbb { R } ^ { 4 }\) which do not belong to \(V\) is denoted by \(W\).
  4. State, with a reason, whether \(W\) is a vector space.
  5. Show that if the vector \(\left( \begin{array} { l } x
    y
    z
    t \end{array} \right)\) belongs to \(W\) then \(y - z - t \neq 0\).